File size: 8,665 Bytes
4fc86f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import pytest
import pyarrow as pa
from pyarrow import Codec
from pyarrow import fs

import numpy as np

groups = [
    'acero',
    'azure',
    'brotli',
    'bz2',
    'cython',
    'dataset',
    'hypothesis',
    'fastparquet',
    'gandiva',
    'gcs',
    'gdb',
    'gzip',
    'hdfs',
    'large_memory',
    'lz4',
    'memory_leak',
    'nopandas',
    'orc',
    'pandas',
    'parquet',
    'parquet_encryption',
    's3',
    'snappy',
    'substrait',
    'flight',
    'slow',
    'requires_testing_data',
    'zstd',
]

defaults = {
    'acero': False,
    'azure': False,
    'brotli': Codec.is_available('brotli'),
    'bz2': Codec.is_available('bz2'),
    'cython': False,
    'dataset': False,
    'fastparquet': False,
    'flight': False,
    'gandiva': False,
    'gcs': False,
    'gdb': True,
    'gzip': Codec.is_available('gzip'),
    'hdfs': False,
    'hypothesis': False,
    'large_memory': False,
    'lz4': Codec.is_available('lz4'),
    'memory_leak': False,
    'nopandas': False,
    'orc': False,
    'pandas': False,
    'parquet': False,
    'parquet_encryption': False,
    'requires_testing_data': True,
    's3': False,
    'slow': False,
    'snappy': Codec.is_available('snappy'),
    'substrait': False,
    'zstd': Codec.is_available('zstd'),
}

try:
    import cython  # noqa
    defaults['cython'] = True
except ImportError:
    pass

try:
    import fastparquet  # noqa
    defaults['fastparquet'] = True
except ImportError:
    pass

try:
    import pyarrow.gandiva  # noqa
    defaults['gandiva'] = True
except ImportError:
    pass

try:
    import pyarrow.acero  # noqa
    defaults['acero'] = True
except ImportError:
    pass

try:
    import pyarrow.dataset  # noqa
    defaults['dataset'] = True
except ImportError:
    pass

try:
    import pyarrow.orc  # noqa
    defaults['orc'] = True
except ImportError:
    pass

try:
    import pandas  # noqa
    defaults['pandas'] = True
except ImportError:
    defaults['nopandas'] = True

try:
    import pyarrow.parquet  # noqa
    defaults['parquet'] = True
except ImportError:
    pass

try:
    import pyarrow.parquet.encryption  # noqa
    defaults['parquet_encryption'] = True
except ImportError:
    pass

try:
    import pyarrow.flight  # noqa
    defaults['flight'] = True
except ImportError:
    pass

try:
    from pyarrow.fs import AzureFileSystem  # noqa
    defaults['azure'] = True
except ImportError:
    pass

try:
    from pyarrow.fs import GcsFileSystem  # noqa
    defaults['gcs'] = True
except ImportError:
    pass

try:
    from pyarrow.fs import S3FileSystem  # noqa
    defaults['s3'] = True
except ImportError:
    pass

try:
    from pyarrow.fs import HadoopFileSystem  # noqa
    defaults['hdfs'] = True
except ImportError:
    pass

try:
    import pyarrow.substrait  # noqa
    defaults['substrait'] = True
except ImportError:
    pass


# Doctest should ignore files for the modules that are not built
def pytest_ignore_collect(path, config):
    if config.option.doctestmodules:
        # don't try to run doctests on the /tests directory
        if "/pyarrow/tests/" in str(path):
            return True

        doctest_groups = [
            'dataset',
            'orc',
            'parquet',
            'flight',
            'substrait',
        ]

        # handle cuda, flight, etc
        for group in doctest_groups:
            if 'pyarrow/{}'.format(group) in str(path):
                if not defaults[group]:
                    return True

        if 'pyarrow/parquet/encryption' in str(path):
            if not defaults['parquet_encryption']:
                return True

        if 'pyarrow/cuda' in str(path):
            try:
                import pyarrow.cuda  # noqa
                return False
            except ImportError:
                return True

        if 'pyarrow/fs' in str(path):
            try:
                from pyarrow.fs import S3FileSystem  # noqa
                return False
            except ImportError:
                return True

    if getattr(config.option, "doctest_cython", False):
        if "/pyarrow/tests/" in str(path):
            return True
        if "/pyarrow/_parquet_encryption" in str(path):
            return True

    return False


# Save output files from doctest examples into temp dir
@pytest.fixture(autouse=True)
def _docdir(request):

    # Trigger ONLY for the doctests
    doctest_m = request.config.option.doctestmodules
    doctest_c = getattr(request.config.option, "doctest_cython", False)

    if doctest_m or doctest_c:

        # Get the fixture dynamically by its name.
        tmpdir = request.getfixturevalue('tmpdir')

        # Chdir only for the duration of the test.
        with tmpdir.as_cwd():
            yield

    else:
        yield


# Define doctest_namespace for fs module docstring import
@pytest.fixture(autouse=True)
def add_fs(doctest_namespace, request, tmp_path):

    # Trigger ONLY for the doctests
    doctest_m = request.config.option.doctestmodules
    doctest_c = getattr(request.config.option, "doctest_cython", False)

    if doctest_m or doctest_c:
        # fs import
        doctest_namespace["fs"] = fs

        # Creation of an object and file with data
        local = fs.LocalFileSystem()
        path = tmp_path / 'pyarrow-fs-example.dat'
        with local.open_output_stream(str(path)) as stream:
            stream.write(b'data')
        doctest_namespace["local"] = local
        doctest_namespace["local_path"] = str(tmp_path)
        doctest_namespace["path"] = str(path)
    yield


# Define udf fixture for test_udf.py and test_substrait.py
@pytest.fixture(scope="session")
def unary_func_fixture():
    """
    Register a unary scalar function.
    """
    from pyarrow import compute as pc

    def unary_function(ctx, x):
        return pc.call_function("add", [x, 1],
                                memory_pool=ctx.memory_pool)
    func_name = "y=x+1"
    unary_doc = {"summary": "add function",
                 "description": "test add function"}
    pc.register_scalar_function(unary_function,
                                func_name,
                                unary_doc,
                                {"array": pa.int64()},
                                pa.int64())
    return unary_function, func_name


@pytest.fixture(scope="session")
def unary_agg_func_fixture():
    """
    Register a unary aggregate function (mean)
    """
    from pyarrow import compute as pc

    def func(ctx, x):
        return pa.scalar(np.nanmean(x))

    func_name = "mean_udf"
    func_doc = {"summary": "y=avg(x)",
                "description": "find mean of x"}

    pc.register_aggregate_function(func,
                                   func_name,
                                   func_doc,
                                   {
                                       "x": pa.float64(),
                                   },
                                   pa.float64()
                                   )
    return func, func_name


@pytest.fixture(scope="session")
def varargs_agg_func_fixture():
    """
    Register a unary aggregate function
    """
    from pyarrow import compute as pc

    def func(ctx, *args):
        sum = 0.0
        for arg in args:
            sum += np.nanmean(arg)
        return pa.scalar(sum)

    func_name = "sum_mean"
    func_doc = {"summary": "Varargs aggregate",
                "description": "Varargs aggregate"}

    pc.register_aggregate_function(func,
                                   func_name,
                                   func_doc,
                                   {
                                       "x": pa.int64(),
                                       "y": pa.float64()
                                   },
                                   pa.float64()
                                   )
    return func, func_name