File size: 19,321 Bytes
598fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
"""
Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but
can be accessed, for example, as

>>> import networkx
>>> networkx.utils.make_list_of_ints({1, 2, 3})
[1, 2, 3]
>>> networkx.utils.arbitrary_element({5, 1, 7})  # doctest: +SKIP
1
"""

import random
import sys
import uuid
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from itertools import chain, tee

import networkx as nx

__all__ = [
    "flatten",
    "make_list_of_ints",
    "dict_to_numpy_array",
    "arbitrary_element",
    "pairwise",
    "groups",
    "create_random_state",
    "create_py_random_state",
    "PythonRandomInterface",
    "PythonRandomViaNumpyBits",
    "nodes_equal",
    "edges_equal",
    "graphs_equal",
    "_clear_cache",
]


# some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py


def flatten(obj, result=None):
    """Return flattened version of (possibly nested) iterable object."""
    if not isinstance(obj, Iterable | Sized) or isinstance(obj, str):
        return obj
    if result is None:
        result = []
    for item in obj:
        if not isinstance(item, Iterable | Sized) or isinstance(item, str):
            result.append(item)
        else:
            flatten(item, result)
    return tuple(result)


def make_list_of_ints(sequence):
    """Return list of ints from sequence of integral numbers.

    All elements of the sequence must satisfy int(element) == element
    or a ValueError is raised. Sequence is iterated through once.

    If sequence is a list, the non-int values are replaced with ints.
    So, no new list is created
    """
    if not isinstance(sequence, list):
        result = []
        for i in sequence:
            errmsg = f"sequence is not all integers: {i}"
            try:
                ii = int(i)
            except ValueError:
                raise nx.NetworkXError(errmsg) from None
            if ii != i:
                raise nx.NetworkXError(errmsg)
            result.append(ii)
        return result
    # original sequence is a list... in-place conversion to ints
    for indx, i in enumerate(sequence):
        errmsg = f"sequence is not all integers: {i}"
        if isinstance(i, int):
            continue
        try:
            ii = int(i)
        except ValueError:
            raise nx.NetworkXError(errmsg) from None
        if ii != i:
            raise nx.NetworkXError(errmsg)
        sequence[indx] = ii
    return sequence


def dict_to_numpy_array(d, mapping=None):
    """Convert a dictionary of dictionaries to a numpy array
    with optional mapping."""
    try:
        return _dict_to_numpy_array2(d, mapping)
    except (AttributeError, TypeError):
        # AttributeError is when no mapping was provided and v.keys() fails.
        # TypeError is when a mapping was provided and d[k1][k2] fails.
        return _dict_to_numpy_array1(d, mapping)


def _dict_to_numpy_array2(d, mapping=None):
    """Convert a dictionary of dictionaries to a 2d numpy array
    with optional mapping.

    """
    import numpy as np

    if mapping is None:
        s = set(d.keys())
        for k, v in d.items():
            s.update(v.keys())
        mapping = dict(zip(s, range(len(s))))
    n = len(mapping)
    a = np.zeros((n, n))
    for k1, i in mapping.items():
        for k2, j in mapping.items():
            try:
                a[i, j] = d[k1][k2]
            except KeyError:
                pass
    return a


def _dict_to_numpy_array1(d, mapping=None):
    """Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
    import numpy as np

    if mapping is None:
        s = set(d.keys())
        mapping = dict(zip(s, range(len(s))))
    n = len(mapping)
    a = np.zeros(n)
    for k1, i in mapping.items():
        i = mapping[k1]
        a[i] = d[k1]
    return a


def arbitrary_element(iterable):
    """Returns an arbitrary element of `iterable` without removing it.

    This is most useful for "peeking" at an arbitrary element of a set,
    but can be used for any list, dictionary, etc., as well.

    Parameters
    ----------
    iterable : `abc.collections.Iterable` instance
        Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
        etc.

    Returns
    -------
    The object that results from ``next(iter(iterable))``

    Raises
    ------
    ValueError
        If `iterable` is an iterator (because the current implementation of
        this function would consume an element from the iterator).

    Examples
    --------
    Arbitrary elements from common Iterable objects:

    >>> nx.utils.arbitrary_element([1, 2, 3])  # list
    1
    >>> nx.utils.arbitrary_element((1, 2, 3))  # tuple
    1
    >>> nx.utils.arbitrary_element({1, 2, 3})  # set
    1
    >>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
    >>> nx.utils.arbitrary_element(d)  # dict_keys
    1
    >>> nx.utils.arbitrary_element(d.values())  # dict values
    3

    `str` is also an Iterable:

    >>> nx.utils.arbitrary_element("hello")
    'h'

    :exc:`ValueError` is raised if `iterable` is an iterator:

    >>> iterator = iter([1, 2, 3])  # Iterator, *not* Iterable
    >>> nx.utils.arbitrary_element(iterator)
    Traceback (most recent call last):
        ...
    ValueError: cannot return an arbitrary item from an iterator

    Notes
    -----
    This function does not return a *random* element. If `iterable` is
    ordered, sequential calls will return the same value::

        >>> l = [1, 2, 3]
        >>> nx.utils.arbitrary_element(l)
        1
        >>> nx.utils.arbitrary_element(l)
        1

    """
    if isinstance(iterable, Iterator):
        raise ValueError("cannot return an arbitrary item from an iterator")
    # Another possible implementation is ``for x in iterable: return x``.
    return next(iter(iterable))


# Recipe from the itertools documentation.
def pairwise(iterable, cyclic=False):
    "s -> (s0, s1), (s1, s2), (s2, s3), ..."
    a, b = tee(iterable)
    first = next(b, None)
    if cyclic is True:
        return zip(a, chain(b, (first,)))
    return zip(a, b)


def groups(many_to_one):
    """Converts a many-to-one mapping into a one-to-many mapping.

    `many_to_one` must be a dictionary whose keys and values are all
    :term:`hashable`.

    The return value is a dictionary mapping values from `many_to_one`
    to sets of keys from `many_to_one` that have that value.

    Examples
    --------
    >>> from networkx.utils import groups
    >>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
    >>> groups(many_to_one)  # doctest: +SKIP
    {1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
    """
    one_to_many = defaultdict(set)
    for v, k in many_to_one.items():
        one_to_many[k].add(v)
    return dict(one_to_many)


def create_random_state(random_state=None):
    """Returns a numpy.random.RandomState or numpy.random.Generator instance
    depending on input.

    Parameters
    ----------
    random_state : int or NumPy RandomState or Generator instance, optional (default=None)
        If int, return a numpy.random.RandomState instance set with seed=int.
        if `numpy.random.RandomState` instance, return it.
        if `numpy.random.Generator` instance, return it.
        if None or numpy.random, return the global random number generator used
        by numpy.random.
    """
    import numpy as np

    if random_state is None or random_state is np.random:
        return np.random.mtrand._rand
    if isinstance(random_state, np.random.RandomState):
        return random_state
    if isinstance(random_state, int):
        return np.random.RandomState(random_state)
    if isinstance(random_state, np.random.Generator):
        return random_state
    msg = (
        f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
        "numpy.random.Generator instance"
    )
    raise ValueError(msg)


class PythonRandomViaNumpyBits(random.Random):
    """Provide the random.random algorithms using a numpy.random bit generator

    The intent is to allow people to contribute code that uses Python's random
    library, but still allow users to provide a single easily controlled random
    bit-stream for all work with NetworkX. This implementation is based on helpful
    comments and code from Robert Kern on NumPy's GitHub Issue #24458.

    This implementation supercedes that of `PythonRandomInterface` which rewrote
    methods to account for subtle differences in API between `random` and
    `numpy.random`. Instead this subclasses `random.Random` and overwrites
    the methods `random`, `getrandbits`, `getstate`, `setstate` and `seed`.
    It makes them use the rng values from an input numpy `RandomState` or `Generator`.
    Those few methods allow the rest of the `random.Random` methods to provide
    the API interface of `random.random` while using randomness generated by
    a numpy generator.
    """

    def __init__(self, rng=None):
        try:
            import numpy as np
        except ImportError:
            msg = "numpy not found, only random.random available."
            warnings.warn(msg, ImportWarning)

        if rng is None:
            self._rng = np.random.mtrand._rand
        else:
            self._rng = rng

        # Not necessary, given our overriding of gauss() below, but it's
        # in the superclass and nominally public, so initialize it here.
        self.gauss_next = None

    def random(self):
        """Get the next random number in the range 0.0 <= X < 1.0."""
        return self._rng.random()

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k < 0:
            raise ValueError("number of bits must be non-negative")
        numbytes = (k + 7) // 8  # bits / 8 and rounded up
        x = int.from_bytes(self._rng.bytes(numbytes), "big")
        return x >> (numbytes * 8 - k)  # trim excess bits

    def getstate(self):
        return self._rng.__getstate__()

    def setstate(self, state):
        self._rng.__setstate__(state)

    def seed(self, *args, **kwds):
        "Do nothing override method."
        raise NotImplementedError("seed() not implemented in PythonRandomViaNumpyBits")


##################################################################
class PythonRandomInterface:
    """PythonRandomInterface is included for backward compatibility
    New code should use PythonRandomViaNumpyBits instead.
    """

    def __init__(self, rng=None):
        try:
            import numpy as np
        except ImportError:
            msg = "numpy not found, only random.random available."
            warnings.warn(msg, ImportWarning)

        if rng is None:
            self._rng = np.random.mtrand._rand
        else:
            self._rng = rng

    def random(self):
        return self._rng.random()

    def uniform(self, a, b):
        return a + (b - a) * self._rng.random()

    def randrange(self, a, b=None):
        import numpy as np

        if b is None:
            a, b = 0, a
        if b > 9223372036854775807:  # from np.iinfo(np.int64).max
            tmp_rng = PythonRandomViaNumpyBits(self._rng)
            return tmp_rng.randrange(a, b)

        if isinstance(self._rng, np.random.Generator):
            return self._rng.integers(a, b)
        return self._rng.randint(a, b)

    # NOTE: the numpy implementations of `choice` don't support strings, so
    # this cannot be replaced with self._rng.choice
    def choice(self, seq):
        import numpy as np

        if isinstance(self._rng, np.random.Generator):
            idx = self._rng.integers(0, len(seq))
        else:
            idx = self._rng.randint(0, len(seq))
        return seq[idx]

    def gauss(self, mu, sigma):
        return self._rng.normal(mu, sigma)

    def shuffle(self, seq):
        return self._rng.shuffle(seq)

    #    Some methods don't match API for numpy RandomState.
    #    Commented out versions are not used by NetworkX

    def sample(self, seq, k):
        return self._rng.choice(list(seq), size=(k,), replace=False)

    def randint(self, a, b):
        import numpy as np

        if b > 9223372036854775807:  # from np.iinfo(np.int64).max
            tmp_rng = PythonRandomViaNumpyBits(self._rng)
            return tmp_rng.randint(a, b)

        if isinstance(self._rng, np.random.Generator):
            return self._rng.integers(a, b + 1)
        return self._rng.randint(a, b + 1)

    #    exponential as expovariate with 1/argument,
    def expovariate(self, scale):
        return self._rng.exponential(1 / scale)

    #    pareto as paretovariate with 1/argument,
    def paretovariate(self, shape):
        return self._rng.pareto(shape)


#    weibull as weibullvariate multiplied by beta,
#    def weibullvariate(self, alpha, beta):
#        return self._rng.weibull(alpha) * beta
#
#    def triangular(self, low, high, mode):
#        return self._rng.triangular(low, mode, high)
#
#    def choices(self, seq, weights=None, cum_weights=None, k=1):
#        return self._rng.choice(seq


def create_py_random_state(random_state=None):
    """Returns a random.Random instance depending on input.

    Parameters
    ----------
    random_state : int or random number generator or None (default=None)
        - If int, return a `random.Random` instance set with seed=int.
        - If `random.Random` instance, return it.
        - If None or the `np.random` package, return the global random number
          generator used by `np.random`.
        - If an `np.random.Generator` instance, or the `np.random` package, or
          the global numpy random number generator, then return it.
          wrapped in a `PythonRandomViaNumpyBits` class.
        - If a `PythonRandomViaNumpyBits` instance, return it.
        - If a `PythonRandomInterface` instance, return it.
        - If a `np.random.RandomState` instance and not the global numpy default,
          return it wrapped in `PythonRandomInterface` for backward bit-stream
          matching with legacy code.

    Notes
    -----
    - A diagram intending to illustrate the relationships behind our support
      for numpy random numbers is called
      `NetworkX Numpy Random Numbers <https://excalidraw.com/#room=b5303f2b03d3af7ccc6a,e5ZDIWdWWCTTsg8OqoRvPA>`_.
    - More discussion about this support also appears in
      `gh-6869#comment <https://github.com/networkx/networkx/pull/6869#issuecomment-1944799534>`_.
    - Wrappers of numpy.random number generators allow them to mimic the Python random
      number generation algorithms. For example, Python can create arbitrarily large
      random ints, and the wrappers use Numpy bit-streams with CPython's random module
      to choose arbitrarily large random integers too.
    - We provide two wrapper classes:
      `PythonRandomViaNumpyBits` is usually what you want and is always used for
      `np.Generator` instances. But for users who need to recreate random numbers
      produced in NetworkX 3.2 or earlier, we maintain the `PythonRandomInterface`
      wrapper as well. We use it only used if passed a (non-default) `np.RandomState`
      instance pre-initialized from a seed. Otherwise the newer wrapper is used.
    """
    if random_state is None or random_state is random:
        return random._inst
    if isinstance(random_state, random.Random):
        return random_state
    if isinstance(random_state, int):
        return random.Random(random_state)

    try:
        import numpy as np
    except ImportError:
        pass
    else:
        if isinstance(random_state, PythonRandomInterface | PythonRandomViaNumpyBits):
            return random_state
        if isinstance(random_state, np.random.Generator):
            return PythonRandomViaNumpyBits(random_state)
        if random_state is np.random:
            return PythonRandomViaNumpyBits(np.random.mtrand._rand)

        if isinstance(random_state, np.random.RandomState):
            if random_state is np.random.mtrand._rand:
                return PythonRandomViaNumpyBits(random_state)
            # Only need older interface if specially constructed RandomState used
            return PythonRandomInterface(random_state)

    msg = f"{random_state} cannot be used to generate a random.Random instance"
    raise ValueError(msg)


def nodes_equal(nodes1, nodes2):
    """Check if nodes are equal.

    Equality here means equal as Python objects.
    Node data must match if included.
    The order of nodes is not relevant.

    Parameters
    ----------
    nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples

    Returns
    -------
    bool
        True if nodes are equal, False otherwise.
    """
    nlist1 = list(nodes1)
    nlist2 = list(nodes2)
    try:
        d1 = dict(nlist1)
        d2 = dict(nlist2)
    except (ValueError, TypeError):
        d1 = dict.fromkeys(nlist1)
        d2 = dict.fromkeys(nlist2)
    return d1 == d2


def edges_equal(edges1, edges2):
    """Check if edges are equal.

    Equality here means equal as Python objects.
    Edge data must match if included.
    The order of the edges is not relevant.

    Parameters
    ----------
    edges1, edges2 : iterables of with u, v nodes as
        edge tuples (u, v), or
        edge tuples with data dicts (u, v, d), or
        edge tuples with keys and data dicts (u, v, k, d)

    Returns
    -------
    bool
        True if edges are equal, False otherwise.
    """
    from collections import defaultdict

    d1 = defaultdict(dict)
    d2 = defaultdict(dict)
    c1 = 0
    for c1, e in enumerate(edges1):
        u, v = e[0], e[1]
        data = [e[2:]]
        if v in d1[u]:
            data = d1[u][v] + data
        d1[u][v] = data
        d1[v][u] = data
    c2 = 0
    for c2, e in enumerate(edges2):
        u, v = e[0], e[1]
        data = [e[2:]]
        if v in d2[u]:
            data = d2[u][v] + data
        d2[u][v] = data
        d2[v][u] = data
    if c1 != c2:
        return False
    # can check one direction because lengths are the same.
    for n, nbrdict in d1.items():
        for nbr, datalist in nbrdict.items():
            if n not in d2:
                return False
            if nbr not in d2[n]:
                return False
            d2datalist = d2[n][nbr]
            for data in datalist:
                if datalist.count(data) != d2datalist.count(data):
                    return False
    return True


def graphs_equal(graph1, graph2):
    """Check if graphs are equal.

    Equality here means equal as Python objects (not isomorphism).
    Node, edge and graph data must match.

    Parameters
    ----------
    graph1, graph2 : graph

    Returns
    -------
    bool
        True if graphs are equal, False otherwise.
    """
    return (
        graph1.adj == graph2.adj
        and graph1.nodes == graph2.nodes
        and graph1.graph == graph2.graph
    )


def _clear_cache(G):
    """Clear the cache of a graph (currently stores converted graphs).

    Caching is controlled via ``nx.config.cache_converted_graphs`` configuration.
    """
    if cache := getattr(G, "__networkx_cache__", None):
        cache.clear()