File size: 29,863 Bytes
fab61cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
from __future__ import annotations

import functools
import hashlib
import json
import os
import re
from collections import namedtuple
from pathlib import Path
from typing import Any

from dataclasses import dataclass

from .._C.libtriton.triton import (ClusterInfo, TMAInfos, add_external_libs, compile_ptx_to_cubin, get_env_vars,
                                   get_num_warps, get_shared_memory_size, ir, runtime, translate_llvmir_to_ptx,
                                   translate_triton_gpu_to_llvmir)
from ..common.backend import get_backend, get_cuda_version_key, path_to_ptxas
from ..common.build import is_hip
# from ..runtime import driver, jit, JITFunction
# TODO: runtime.errors
from ..runtime.autotuner import OutOfResources
from ..runtime.cache import get_cache_manager, get_dump_manager, get_override_manager
from ..runtime.driver import driver
from ..runtime.jit import (JITFunction, get_cuda_stream, get_current_device, get_device_capability)
from ..tools.disasm import get_sass
from .code_generator import ast_to_ttir
from .make_launcher import make_stub
from .utils import (InfoFromBackendForTensorMap, TensorMapManager, get_ids_of_tensormaps, parse_tma_info)


@dataclass
class CudaTargetDescriptor:
    capability: int
    num_warps: int
    enable_fp_fusion: bool


def _is_cuda(target):
    return isinstance(target, CudaTargetDescriptor)


class LazyDict(dict):

    def __getitem__(self, key):
        val = dict.__getitem__(self, key)
        if callable(val):
            return val()
        return val


def inline_triton_ir(mod):
    pm = ir.pass_manager(mod.context)
    pm.enable_debug()
    pm.add_inliner_pass()
    pm.run(mod)
    return mod


def ttir_compute_capability_rewrite(mod, target):
    # For hardware without support, we must rewrite all load/store
    # with block (tensor) pointers into tensors of pointers
    pm = ir.pass_manager(mod.context)
    pm.enable_debug()
    if _is_cuda(target):
        pm.add_rewrite_tensor_pointer_pass(target.capability)
    pm.run(mod)
    return mod


def optimize_ttir(mod, target):
    mod = inline_triton_ir(mod)
    mod = ttir_compute_capability_rewrite(mod, target)
    pm = ir.pass_manager(mod.context)
    pm.enable_debug()
    pm.add_inliner_pass()
    pm.add_triton_combine_pass()
    pm.add_canonicalizer_pass()
    pm.add_reorder_broadcast_pass()
    pm.add_cse_pass()
    pm.add_licm_pass()
    pm.add_symbol_dce_pass()
    pm.run(mod)
    return mod


def ttir_to_ttgir(mod, num_warps, num_ctas, target):
    pm = ir.pass_manager(mod.context)
    pm.enable_debug()
    pm.add_convert_triton_to_tritongpu_pass(num_warps, 32, num_ctas, target.capability)
    pm.run(mod)
    return mod


def optimize_ttgir(mod, num_stages, num_warps, num_ctas, target, cluster_info, enable_warp_specialization,
                   enable_persistent, optimize_epilogue):
    is_cuda = _is_cuda(target)
    if is_cuda:
        capability = target.capability
    pm = ir.pass_manager(mod.context)
    pm.enable_debug()
    pm.add_tritongpu_coalesce_pass()
    # TODO(Qingyi): Move PlanCTAPass to the front of CoalescePass
    pm.add_plan_cta_pass(cluster_info)
    if is_cuda:
        pm.add_tritongpu_rewrite_tensor_pointer_pass(capability)
        pm.add_plan_cta_pass(cluster_info)
    pm.add_tritongpu_remove_layout_conversions_pass()
    if is_cuda:
        pm.add_tritongpu_accelerate_matmul_pass(capability)
    pm.add_tritongpu_remove_layout_conversions_pass()
    if optimize_epilogue:
        pm.add_tritongpu_optimize_epilogue_pass()
    pm.add_tritongpu_optimize_dot_operands_pass()
    pm.add_cse_pass()
    ws_enabled = False
    # `num_warps` does not mean the total number of warps of a CTA when
    # warp specialization is enabled.
    # it's the responsibility of the compiler to figure out the exact
    # `num_warps` to use.
    # TODO: support the case where `num_warps` from user is not 4.
    if capability // 10 >= 9 and enable_warp_specialization and num_warps == 4:
        pm.add_tritongpu_ws_feasibility_checking_pass(capability)
        pm.run(mod)
        ws_enabled = ir.is_ws_supported(mod)
        pm = ir.pass_manager(mod.context)
        pm.enable_debug()
    if ws_enabled:
        pm.add_tritongpu_wsdecomposing_pass(capability)
        pm.add_tritongpu_wspipeline_pass(num_stages, num_warps, capability)
        pm.add_tritongpu_wsmutex_pass(capability)
        pm.add_tritongpu_wsmaterialization_pass(capability)
        pm.add_licm_pass()
        pm.add_cse_pass()
    else:
        pm.add_tritongpu_pipeline_pass(num_stages, num_warps, num_ctas, capability)
    pm.add_tritongpu_materialize_load_store_pass(num_warps, capability)
    if capability // 10 <= 8:
        pm.add_tritongpu_prefetch_pass()
    pm.add_tritongpu_optimize_dot_operands_pass()
    pm.add_tritongpu_remove_layout_conversions_pass()
    pm.add_tritongpu_decompose_conversions_pass()
    pm.add_tritongpu_ws_fixup_missing_attrs_pass()
    pm.add_tritongpu_reorder_instructions_pass()
    pm.add_cse_pass()
    pm.add_symbol_dce_pass()
    if capability // 10 >= 9:
        pm.add_tritongpu_fence_insertion_pass()
    pm.add_tritongpu_ws_fixup_missing_attrs_pass()
    pm.add_tritongpu_optimize_thread_locality_pass()
    pm.add_canonicalizer_pass()
    pm.run(mod)
    return mod


def _add_external_libs(mod, libs):
    for name, path in libs.items():
        if len(name) == 0 or len(path) == 0:
            return
    add_external_libs(mod, list(libs.keys()), list(libs.values()))


def ttgir_to_llir(mod, extern_libs, target, tma_infos):
    if extern_libs:
        _add_external_libs(mod, extern_libs)
    # TODO: separate tritongpu_to_llvmir for different backends
    if _is_cuda(target):
        return translate_triton_gpu_to_llvmir(mod, target.capability, tma_infos, runtime.TARGET.NVVM)
    else:
        return translate_triton_gpu_to_llvmir(mod, 0, TMAInfos(), runtime.TARGET.ROCDL)


# PTX translation


@functools.lru_cache()
def ptx_get_version(cuda_version) -> int:
    '''
    Get the highest PTX version supported by the current CUDA driver.
    '''
    assert isinstance(cuda_version, str)
    major, minor = map(int, cuda_version.split('.'))
    if major == 12:
        return 80 + minor
    if major == 11:
        return 70 + minor
    if major == 10:
        return 63 + minor
    raise RuntimeError("Triton only support CUDA 10.0 or higher")


def llir_to_ptx(mod: Any, target: CudaTargetDescriptor, ptx_version: int = None) -> str:
    '''
    Translate TritonGPU module to PTX code.
    :param mod: a TritonGPU dialect module
    :return: PTX code
    '''
    if ptx_version is None:
        _, cuda_version = path_to_ptxas()
        ptx_version = ptx_get_version(cuda_version)
    return translate_llvmir_to_ptx(mod, target.capability, ptx_version, target.enable_fp_fusion)


def ptx_to_cubin(ptx: str, target: CudaTargetDescriptor):
    '''
    Compile TritonGPU module to cubin.
    :param ptx: ptx code
    :param compute_capability: compute capability
    :return: str
    '''
    ptxas, _ = path_to_ptxas()
    return compile_ptx_to_cubin(ptx, ptxas, target.capability, target.enable_fp_fusion)


# ------------------------------------------------------------------------------
# compiler
# ------------------------------------------------------------------------------
def get_kernel_name(src: str, pattern: str) -> str:
    '''
    Get kernel name from PTX code.
    This Kernel name is required when launching the kernel.
    '''
    # There is a name mangling in PTX codegen, so the original kernel names in Triton IR are not available in PTX/cubin.
    assert src
    for line in src.split('\n'):
        line = line.strip()
        if line.startswith(pattern):
            return line.split()[-1]


def convert_type_repr(x):
    # Currently we only capture the pointer type and assume the pointer is on global memory.
    # TODO: Capture and support shared memory space
    match = re.search(r'!tt\.ptr<([^,]+)', x)
    if match is not None:
        return '*' + convert_type_repr(match.group(1))
    return x


def make_hash(fn, target, env_vars, device_backend, **kwargs):
    if device_backend is None:
        version_key = get_cuda_version_key()
    else:
        version_key = device_backend.get_version_key()
    if isinstance(fn, JITFunction):
        configs = kwargs["configs"]
        signature = kwargs["signature"]
        constants = kwargs.get("constants", dict())
        num_warps = kwargs.get("num_warps", 4)
        num_ctas = kwargs.get("num_ctas", 1)
        num_stages = kwargs.get("num_stages", 3)
        enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
        enable_persistent = kwargs.get("enable_persistent", False)
        debug = kwargs.get("debug", False)
        # Get unique key for the compiled code
        get_conf_key = lambda conf: (sorted(conf.divisible_by_16), sorted(conf.equal_to_1),
                                     sorted(conf.ids_of_folded_args), sorted(conf.divisible_by_8))
        configs_key = [get_conf_key(conf) for conf in configs]
        env_vars_list = [f"{env_vars[k]}" for k in sorted(env_vars.keys())]
        key = f"{fn.cache_key}-{version_key}-{''.join(signature.values())}-{configs_key}-{constants}-{num_warps}-{num_stages}-{num_ctas}-{num_stages}-{enable_warp_specialization}-{enable_persistent}-{debug}-{target}-{env_vars_list}"
        return hashlib.md5(key.encode("utf-8")).hexdigest()
    assert isinstance(fn, str)
    ignore_version = kwargs.get('ignore_version', False)
    if (ignore_version):
        return hashlib.md5((Path(fn).read_text()).encode("utf-8")).hexdigest()
    return hashlib.md5((Path(fn).read_text() + version_key).encode("utf-8")).hexdigest()


# - ^\s*tt\.func\s+ : match the start of the string, any leading whitespace, the keyword func,
#    and any following whitespace
# - (public\s+)? : optionally match the keyword public and any following whitespace
# - (@\w+) : match an @ symbol followed by one or more word characters
#   (letters, digits, or underscores), and capture it as group 1 (the function name)
# - (\((?:%\w+: \S+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\)) : match a pair of parentheses enclosing
#   zero or more arguments separated by commas, and capture it as group 2 (the argument list)
# - (attributes \{[\S\s]+\})? : optionally match attributes enclosed in braces and capture it as group 3
mlir_prototype_pattern = r"^\s*tt\.func\s+(?:public\s+)?(@\w+)(\((?:%\w+: [\S\s]+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\))\s*(attributes \{[\S\s]+\})?\s+\{\s*$"
ptx_prototype_pattern = r"\.(?:visible|extern)\s+\.(?:entry|func)\s+(\w+)\s*\(([^)]*)\)"
prototype_pattern = {
    "ttir": mlir_prototype_pattern,
    "ttgir": mlir_prototype_pattern,
    "ptx": ptx_prototype_pattern,
}

# - ((?:[^,\s<]+|<[^>]+>)+): Capturing group that matches one or more of either:
#   [^,\s<]+: One or more characters that are not a comma, whitespace, or the < symbol.
#   |: OR
#   <[^>]+>: A string that starts with < and ends with >, containing any characters except > in between.
mlir_arg_type_pattern = r'%\w+: ((?:[^,\s<]+|<[^>]+>)+),?'
ptx_arg_type_pattern = r"\.param\s+\.(\w+)"
arg_type_pattern = {
    "ttir": mlir_arg_type_pattern,
    "ttgir": mlir_arg_type_pattern,
    "ptx": ptx_arg_type_pattern,
}
if is_hip():
    ttgir_num_warps_pattern = r'"triton_gpu_rocm.num-warps"\s?=\s?(\d+)\s?:'
else:
    ttgir_num_warps_pattern = r'"triton_gpu.num-warps"\s?=\s?(\d+)\s?:'


def _get_jsonable_constants(constants):

    def _is_jsonable(x):
        try:
            json.dumps(x)
            return True
        except (TypeError, OverflowError):
            return False

    serialized_constants = {}
    for constant in constants:
        if _is_jsonable(constants[constant]):
            serialized_constants[constant] = constants[constant]
    return serialized_constants


def _get_num_warps_from_ir_str(src: str):
    # TODO(jlebar): Using a regex to get num-warps is a hack, and will break if
    # e.g. someone has an instruction (not module) attribute named "num-warps".
    num_warps_matches = re.findall(ttgir_num_warps_pattern, src)
    assert len(num_warps_matches) == 1, "Expected exactly one match for num_warps"
    num_warps = int(num_warps_matches[0])

    # If warp specialization is enabled, the true number of warps from
    # the perspective of e.g. CUDA is num-warps times the number of
    # specialized groups.
    num_warp_groups_matches = re.findall(r'"triton_gpu.num-warp-groups-per-cta"\s?=\s?(\d+)\s?:', src)
    assert len(num_warp_groups_matches) == 0 or len(num_warp_groups_matches) == 1, \
      "Expected triton_gpu.num-warp-groups-per-cta attribute to appear 0 or 1 times"
    if num_warp_groups_matches:
        num_warps *= int(num_warp_groups_matches[0])

    return num_warps


def parse_mlir_module(path, context):
    module = ir.parse_mlir_module(path, context)
    # module takes ownership of the context
    module.context = context
    return module


instance_descriptor = namedtuple("instance_descriptor",
                                 ["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"],
                                 defaults=[set(), set(), set(), set()])


def get_cuda_capability(capability):
    if capability is None:
        device = get_current_device()
        capability = get_device_capability(device)
        capability = capability[0] * 10 + capability[1]
    return capability


def get_arch_default_num_warps(device_type):
    if device_type in ["cuda", "hip"]:
        num_warps = 4
    else:
        _device_backend = get_backend(device_type)
        assert _device_backend
        arch = _device_backend.get_architecture_descriptor()
        num_warps = arch["num_warps"]
    return num_warps


def get_arch_default_num_stages(device_type, capability=None):
    if device_type == "cuda":
        num_stages = 3 if get_cuda_capability(capability) >= 75 else 2
    else:
        _device_backend = get_backend(device_type)
        assert _device_backend
        arch = _device_backend.get_architecture_descriptor()
        num_stages = arch["num_stages"]

    return num_stages


def add_cuda_stages(target, extern_libs, stages):

    stages["ptx"] = (lambda path: Path(path).read_text(), lambda src: llir_to_ptx(src, target))
    stages["cubin"] = (lambda path: Path(path).read_bytes(), lambda src: ptx_to_cubin(src, target))


def compile(fn, **kwargs):
    # Get device type to decide which backend should be used
    device_type = kwargs.get("device_type", "cuda")
    capability = kwargs.get("cc", None)

    if is_hip():
        device_type = "hip"
    is_cuda = device_type == "cuda"
    if is_hip():
        is_cuda = False

    context = ir.context()
    constants = kwargs.get("constants", dict())
    num_warps = kwargs.get("num_warps", get_arch_default_num_warps(device_type))
    assert num_warps > 0 and (num_warps & (num_warps - 1)) == 0, "num_warps must be a power of 2"
    num_ctas = kwargs.get("num_ctas", 1)
    num_stages = kwargs.get("num_stages", get_arch_default_num_stages(device_type, capability=capability))
    enable_fp_fusion = kwargs.get("enable_fp_fusion", True)
    # TODO[shuhaoj]: Default should be to enable warp specialization once possible
    enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
    # TODO[shuhaoj]: persistent can be decoupled with warp specialization
    enable_persistent = kwargs.get("enable_persistent", enable_warp_specialization)
    extern_libs = kwargs.get("extern_libs", dict())
    if extern_libs is None:
        extern_libs = dict()
    debug = kwargs.get("debug", False)
    # Flag to control whether to store mma layout directly
    optimize_epilogue = False
    if os.environ.get('OPTIMIZE_EPILOGUE', '') == '1':
        optimize_epilogue = True
    #
    cluster_info = ClusterInfo()
    if "clusterDims" in kwargs:
        cluster_info.clusterDimX = kwargs["clusterDims"][0]
        cluster_info.clusterDimY = kwargs["clusterDims"][1]
        cluster_info.clusterDimZ = kwargs["clusterDims"][2]
    tma_infos = TMAInfos()
    # build architecture descriptor
    if device_type == "cuda":
        _device_backend = get_backend(device_type)
        target = CudaTargetDescriptor(capability=get_cuda_capability(capability), num_warps=num_warps,
                                      enable_fp_fusion=enable_fp_fusion)
    else:
        _device_backend = get_backend(device_type)
        assert _device_backend
        target = _device_backend.get_architecture_descriptor(**kwargs)
    # build compilation stages
    stages = dict()
    stages["ast"] = (lambda path: fn, None)
    stages["ttir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttir(
        ast_to_ttir(src, signature, configs[0], constants, debug=debug, target=target), target))
    if is_cuda:
        stages["ttgir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttgir(
            ttir_to_ttgir(src, num_warps, num_ctas, target), num_stages, num_warps, num_ctas, target, cluster_info,
            enable_warp_specialization, enable_persistent, optimize_epilogue))
        stages["llir"] = (lambda path: Path(path).read_text(),
                          lambda src: ttgir_to_llir(src, extern_libs, target, tma_infos))
        add_cuda_stages(target, extern_libs, stages)
    elif device_type == "hip":
        _device_backend.add_stages(target, extern_libs, stages, num_warps=num_warps, num_stages=num_stages)
    else:
        # pass the user's configuration to the backend device.
        target["num_warps"] = num_warps
        target["num_stages"] = num_stages
        target["num_ctas"] = num_ctas
        _device_backend.add_stages(target, extern_libs, stages)

    # find out the signature of the function
    if isinstance(fn, JITFunction):
        configs = kwargs.get("configs", None)
        signature = kwargs["signature"]
        if configs is None:
            configs = [instance_descriptor()]
        assert len(configs) == 1
        kwargs["configs"] = configs
        name = fn.__name__
        first_stage = 0
        if isinstance(signature, str):
            signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
        kwargs["signature"] = signature
    else:
        assert isinstance(fn, str)
        _, ir_name = os.path.basename(fn).split(".")
        src = Path(fn).read_text()
        import re
        match = re.search(prototype_pattern[ir_name], src, re.MULTILINE)
        # TODO: support function attributes at group 3 (e.g., device function)
        name, signature = match.group(1), match.group(2)
        types = re.findall(arg_type_pattern[ir_name], signature)
        if ir_name == 'ttgir':
            num_warps_from_ir = _get_num_warps_from_ir_str(src)
            assert "num_warps" not in kwargs or num_warps_from_ir == num_warps, "num_warps in ttgir does not match num_warps in compile"
            num_warps = num_warps_from_ir

        param_tys = [convert_type_repr(ty) for ty in types]
        signature = {k: v for k, v in enumerate(param_tys)}
        first_stage = list(stages.keys()).index(ir_name)

    # create cache manager
    fn_cache_manager = get_cache_manager(make_hash(fn, target, get_env_vars(), _device_backend, **kwargs))
    # managers used to dump and override IR for debugging
    enable_override = os.environ.get("TRITON_KERNEL_OVERRIDE", "0") == "1"
    fn_override_manager = get_override_manager(
        make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))
    fn_dump_manager = get_dump_manager(
        make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))

    # determine name and extension type of provided function
    if isinstance(fn, JITFunction):
        name, ext = fn.__name__, "ast"
    else:
        name, ext = os.path.basename(fn).split(".")

    # load metadata if any
    metadata = None
    metadata_filename = f"{name}.json"

    # The group is addressed by the metadata
    metadata_group = fn_cache_manager.get_group(metadata_filename) or {}

    metadata_path = metadata_group.get(metadata_filename)

    if metadata_path is not None:
        with open(metadata_path) as f:
            metadata = json.load(f)
            if 'tensormaps_info' in metadata:
                metadata['tensormaps_info'] = [InfoFromBackendForTensorMap(e) for e in metadata['tensormaps_info']]
    else:
        metadata = {
            "num_warps": num_warps,
            "num_ctas": num_ctas,
            "num_stages": num_stages,
            "enable_warp_specialization": enable_warp_specialization,
            "enable_persistent": enable_persistent,
            "constants": _get_jsonable_constants(constants),
            "debug": debug,
            "target": target,
        }
        metadata.update(get_env_vars())
        if ext == "ptx":
            assert "shared" in kwargs, "ptx compilation must provide shared memory size"
            metadata["shared"] = kwargs["shared"]

    # Add device type to meta information
    metadata["device_type"] = device_type

    first_stage = list(stages.keys()).index(ext)
    asm = LazyDict()
    module = fn
    # run compilation pipeline  and populate metadata
    for ir_name, (parse, compile_kernel) in list(stages.items())[first_stage:]:
        ir_filename = f"{name}.{ir_name}"

        if ir_name == ext:
            next_module = parse(fn)
        else:
            path = metadata_group.get(ir_filename)
            if path is None:
                next_module = compile_kernel(module)
                if ir_name == "amdgcn":
                    extra_file_name = f"{name}.hsaco_path"
                    metadata_group[ir_filename] = fn_cache_manager.put(next_module[0], ir_filename)
                    metadata_group[extra_file_name] = fn_cache_manager.put(next_module[1], extra_file_name)
                else:
                    metadata_group[ir_filename] = fn_cache_manager.put(next_module, ir_filename)
                    fn_dump_manager.put(next_module, ir_filename)
                    if (enable_override and fn_override_manager.has_file(ir_filename)):
                        print(f"\nOverriding kernel with file {ir_filename}")
                        full_name = fn_override_manager.get_file(ir_filename)
                        next_module = parse(full_name)
            else:
                if ir_name == "amdgcn":
                    extra_file_name = f"{name}.hsaco_path"
                    hasco_path = metadata_group.get(extra_file_name)
                    assert hasco_path is not None, "Expected to have hsaco_path in metadata when we have the amdgcn"
                    next_module = (parse(path), parse(hasco_path))
                else:
                    next_module = parse(path)

        if ir_name == "cubin":
            asm[ir_name] = next_module
            asm["sass"] = lambda: get_sass(next_module)
        elif ir_name == "amdgcn":
            asm[ir_name] = str(next_module[0])
        else:
            asm[ir_name] = str(next_module)
        if ir_name == "llir" and "shared" not in metadata:
            if is_hip():
                metadata["shared"] = _device_backend.get_shared_memory_size(module)
            else:
                metadata["shared"] = get_shared_memory_size(module)
        if ir_name == "ttgir":
            if is_hip():
                metadata["num_warps"] = _device_backend.get_num_warps(next_module)
            else:
                metadata["enable_warp_specialization"] = ir.is_ws_supported(next_module)
                if metadata["enable_warp_specialization"]:
                    metadata["num_warps"] = get_num_warps(next_module)
        if ir_name == "ptx":
            metadata["name"] = get_kernel_name(next_module, pattern='// .globl')
        if ir_name == "amdgcn":
            metadata["name"] = get_kernel_name(next_module[0], pattern='.globl')
            asm["hsaco_path"] = next_module[1]
        if not is_cuda and not is_hip():
            _device_backend.add_meta_info(ir_name, module, next_module, metadata, asm)
        module = next_module

    ids_of_folded_args = tuple([int(k) for k in configs[0].ids_of_folded_args]) if isinstance(fn, JITFunction) else ()
    if "clusterDims" not in metadata:
        metadata["clusterDims"] = [cluster_info.clusterDimX, cluster_info.clusterDimY, cluster_info.clusterDimZ]

    if len(tma_infos) > 0:
        metadata["tensormaps_info"] = parse_tma_info(tma_infos, ids_of_folded_args)
    # set constant
    if "tensormaps_info" in metadata:
        for i, _ in enumerate(metadata["tensormaps_info"]):
            metadata["tensormaps_info"][i].ids_of_folded_args = ids_of_folded_args

    ids_of_tensormaps = get_ids_of_tensormaps(metadata.get("tensormaps_info", None))
    if isinstance(fn, JITFunction) and "tensormaps_info" in metadata:
        fn.tensormaps_info = metadata["tensormaps_info"]

    ids_of_const_exprs = tuple(fn.constexprs) if isinstance(fn, JITFunction) else ()
    ids = {
        "ids_of_tensormaps": ids_of_tensormaps, "ids_of_folded_args": ids_of_folded_args, "ids_of_const_exprs":
        ids_of_const_exprs
    }
    # cache manager
    if is_cuda:
        so_path = make_stub(name, signature, constants, ids, enable_warp_specialization=enable_warp_specialization)
    else:
        so_path = _device_backend.make_launcher_stub(name, signature, constants, ids)
    # write-back metadata, if it didn't come from the cache
    if metadata_path is None:
        metadata_group[metadata_filename] = fn_cache_manager.put(json.dumps(metadata, default=vars), metadata_filename,
                                                                 binary=False)
    fn_cache_manager.put_group(metadata_filename, metadata_group)

    # return handle to compiled kernel
    return CompiledKernel(fn, so_path, metadata, asm)


class CompiledKernel:

    # Hooks for external tools to monitor the execution of triton kernels
    launch_enter_hook = None
    launch_exit_hook = None
    tensormap_manager = TensorMapManager()

    def __init__(self, fn, so_path, metadata, asm):
        # initialize launcher
        import importlib.util
        spec = importlib.util.spec_from_file_location("__triton_launcher", so_path)
        mod = importlib.util.module_from_spec(spec)
        self.fn = fn
        spec.loader.exec_module(mod)
        self.c_wrapper = getattr(mod, "launch")
        # initialize metadata
        self.shared = metadata["shared"]
        self.num_warps = metadata["num_warps"]
        if "threads_per_warp" in metadata:
            self.threads_per_warp = metadata["threads_per_warp"]
        self.num_ctas = metadata["num_ctas"]
        self.num_stages = metadata["num_stages"]
        self.clusterDims = metadata["clusterDims"]
        if "tensormaps_info" in metadata:
            self.tensormaps_info = metadata["tensormaps_info"]
        self.constants = metadata["constants"]
        self.device_type = metadata["device_type"]
        self.device_backend = get_backend(self.device_type) if self.device_type not in ["cuda"] else None
        # initialize asm dict
        self.asm = asm
        # binaries are lazily initialized
        # because it involves doing runtime things
        # (e.g., checking amount of shared memory on current device)
        self.metadata = metadata
        self.cu_module = None
        self.cu_function = None

    def _init_handles(self):
        if self.cu_module is not None:
            return

        if self.device_type in ["cuda"]:
            device = get_current_device()
            bin_path = {driver.HIP: "hsaco_path", driver.CUDA: "cubin"}[driver.backend]
            max_shared = driver.utils.get_device_properties(device)["max_shared_mem"]
            fn_load_binary = driver.utils.load_binary
        else:
            assert self.device_backend
            device = self.device_backend.get_current_device()
            bin_path = self.device_backend.get_kernel_bin()
            max_shared = self.device_backend.get_device_properties(device)["max_shared_mem"]
            fn_load_binary = self.device_backend.get_load_binary_fn()

        if self.shared > max_shared:
            raise OutOfResources(self.shared, max_shared, "shared memory")

        mod, func, n_regs, n_spills = fn_load_binary(self.metadata["name"], self.asm[bin_path], self.shared, device)

        self.n_spills = n_spills
        self.n_regs = n_regs
        self.cu_module = mod
        self.cu_function = func

    def __getattribute__(self, name):
        if name == 'c_wrapper':
            self._init_handles()
        return super().__getattribute__(name)

    # capture args and expand args with cutensormap*
    def assemble_tensormap_to_arg(self, args):
        args_with_tma = list(args)
        if hasattr(self, 'tensormaps_info'):
            # tuple for hashable
            args_ptr = tuple([arg.data_ptr() if hasattr(arg, 'data_ptr') else arg for arg in args])
            for i, e in enumerate(self.tensormaps_info):
                args_with_tma.append(CompiledKernel.tensormap_manager[(e, args_ptr)])
        return args_with_tma

    def __getitem__(self, grid):
        self._init_handles()

        def runner(*args, stream=None):
            args_expand = self.assemble_tensormap_to_arg(args)
            if stream is None:
                if self.device_type in ["cuda"]:
                    stream = get_cuda_stream()
                else:
                    stream = get_backend(self.device_type).get_stream(None)
            self.c_wrapper(grid[0], grid[1], grid[2], self.num_warps, self.num_ctas, self.clusterDims[0],
                           self.clusterDims[1], self.clusterDims[2], self.shared, stream, self.cu_function,
                           CompiledKernel.launch_enter_hook, CompiledKernel.launch_exit_hook, self, *args_expand)

        return runner