File size: 29,863 Bytes
fab61cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
from __future__ import annotations
import functools
import hashlib
import json
import os
import re
from collections import namedtuple
from pathlib import Path
from typing import Any
from dataclasses import dataclass
from .._C.libtriton.triton import (ClusterInfo, TMAInfos, add_external_libs, compile_ptx_to_cubin, get_env_vars,
get_num_warps, get_shared_memory_size, ir, runtime, translate_llvmir_to_ptx,
translate_triton_gpu_to_llvmir)
from ..common.backend import get_backend, get_cuda_version_key, path_to_ptxas
from ..common.build import is_hip
# from ..runtime import driver, jit, JITFunction
# TODO: runtime.errors
from ..runtime.autotuner import OutOfResources
from ..runtime.cache import get_cache_manager, get_dump_manager, get_override_manager
from ..runtime.driver import driver
from ..runtime.jit import (JITFunction, get_cuda_stream, get_current_device, get_device_capability)
from ..tools.disasm import get_sass
from .code_generator import ast_to_ttir
from .make_launcher import make_stub
from .utils import (InfoFromBackendForTensorMap, TensorMapManager, get_ids_of_tensormaps, parse_tma_info)
@dataclass
class CudaTargetDescriptor:
capability: int
num_warps: int
enable_fp_fusion: bool
def _is_cuda(target):
return isinstance(target, CudaTargetDescriptor)
class LazyDict(dict):
def __getitem__(self, key):
val = dict.__getitem__(self, key)
if callable(val):
return val()
return val
def inline_triton_ir(mod):
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_inliner_pass()
pm.run(mod)
return mod
def ttir_compute_capability_rewrite(mod, target):
# For hardware without support, we must rewrite all load/store
# with block (tensor) pointers into tensors of pointers
pm = ir.pass_manager(mod.context)
pm.enable_debug()
if _is_cuda(target):
pm.add_rewrite_tensor_pointer_pass(target.capability)
pm.run(mod)
return mod
def optimize_ttir(mod, target):
mod = inline_triton_ir(mod)
mod = ttir_compute_capability_rewrite(mod, target)
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_inliner_pass()
pm.add_triton_combine_pass()
pm.add_canonicalizer_pass()
pm.add_reorder_broadcast_pass()
pm.add_cse_pass()
pm.add_licm_pass()
pm.add_symbol_dce_pass()
pm.run(mod)
return mod
def ttir_to_ttgir(mod, num_warps, num_ctas, target):
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_convert_triton_to_tritongpu_pass(num_warps, 32, num_ctas, target.capability)
pm.run(mod)
return mod
def optimize_ttgir(mod, num_stages, num_warps, num_ctas, target, cluster_info, enable_warp_specialization,
enable_persistent, optimize_epilogue):
is_cuda = _is_cuda(target)
if is_cuda:
capability = target.capability
pm = ir.pass_manager(mod.context)
pm.enable_debug()
pm.add_tritongpu_coalesce_pass()
# TODO(Qingyi): Move PlanCTAPass to the front of CoalescePass
pm.add_plan_cta_pass(cluster_info)
if is_cuda:
pm.add_tritongpu_rewrite_tensor_pointer_pass(capability)
pm.add_plan_cta_pass(cluster_info)
pm.add_tritongpu_remove_layout_conversions_pass()
if is_cuda:
pm.add_tritongpu_accelerate_matmul_pass(capability)
pm.add_tritongpu_remove_layout_conversions_pass()
if optimize_epilogue:
pm.add_tritongpu_optimize_epilogue_pass()
pm.add_tritongpu_optimize_dot_operands_pass()
pm.add_cse_pass()
ws_enabled = False
# `num_warps` does not mean the total number of warps of a CTA when
# warp specialization is enabled.
# it's the responsibility of the compiler to figure out the exact
# `num_warps` to use.
# TODO: support the case where `num_warps` from user is not 4.
if capability // 10 >= 9 and enable_warp_specialization and num_warps == 4:
pm.add_tritongpu_ws_feasibility_checking_pass(capability)
pm.run(mod)
ws_enabled = ir.is_ws_supported(mod)
pm = ir.pass_manager(mod.context)
pm.enable_debug()
if ws_enabled:
pm.add_tritongpu_wsdecomposing_pass(capability)
pm.add_tritongpu_wspipeline_pass(num_stages, num_warps, capability)
pm.add_tritongpu_wsmutex_pass(capability)
pm.add_tritongpu_wsmaterialization_pass(capability)
pm.add_licm_pass()
pm.add_cse_pass()
else:
pm.add_tritongpu_pipeline_pass(num_stages, num_warps, num_ctas, capability)
pm.add_tritongpu_materialize_load_store_pass(num_warps, capability)
if capability // 10 <= 8:
pm.add_tritongpu_prefetch_pass()
pm.add_tritongpu_optimize_dot_operands_pass()
pm.add_tritongpu_remove_layout_conversions_pass()
pm.add_tritongpu_decompose_conversions_pass()
pm.add_tritongpu_ws_fixup_missing_attrs_pass()
pm.add_tritongpu_reorder_instructions_pass()
pm.add_cse_pass()
pm.add_symbol_dce_pass()
if capability // 10 >= 9:
pm.add_tritongpu_fence_insertion_pass()
pm.add_tritongpu_ws_fixup_missing_attrs_pass()
pm.add_tritongpu_optimize_thread_locality_pass()
pm.add_canonicalizer_pass()
pm.run(mod)
return mod
def _add_external_libs(mod, libs):
for name, path in libs.items():
if len(name) == 0 or len(path) == 0:
return
add_external_libs(mod, list(libs.keys()), list(libs.values()))
def ttgir_to_llir(mod, extern_libs, target, tma_infos):
if extern_libs:
_add_external_libs(mod, extern_libs)
# TODO: separate tritongpu_to_llvmir for different backends
if _is_cuda(target):
return translate_triton_gpu_to_llvmir(mod, target.capability, tma_infos, runtime.TARGET.NVVM)
else:
return translate_triton_gpu_to_llvmir(mod, 0, TMAInfos(), runtime.TARGET.ROCDL)
# PTX translation
@functools.lru_cache()
def ptx_get_version(cuda_version) -> int:
'''
Get the highest PTX version supported by the current CUDA driver.
'''
assert isinstance(cuda_version, str)
major, minor = map(int, cuda_version.split('.'))
if major == 12:
return 80 + minor
if major == 11:
return 70 + minor
if major == 10:
return 63 + minor
raise RuntimeError("Triton only support CUDA 10.0 or higher")
def llir_to_ptx(mod: Any, target: CudaTargetDescriptor, ptx_version: int = None) -> str:
'''
Translate TritonGPU module to PTX code.
:param mod: a TritonGPU dialect module
:return: PTX code
'''
if ptx_version is None:
_, cuda_version = path_to_ptxas()
ptx_version = ptx_get_version(cuda_version)
return translate_llvmir_to_ptx(mod, target.capability, ptx_version, target.enable_fp_fusion)
def ptx_to_cubin(ptx: str, target: CudaTargetDescriptor):
'''
Compile TritonGPU module to cubin.
:param ptx: ptx code
:param compute_capability: compute capability
:return: str
'''
ptxas, _ = path_to_ptxas()
return compile_ptx_to_cubin(ptx, ptxas, target.capability, target.enable_fp_fusion)
# ------------------------------------------------------------------------------
# compiler
# ------------------------------------------------------------------------------
def get_kernel_name(src: str, pattern: str) -> str:
'''
Get kernel name from PTX code.
This Kernel name is required when launching the kernel.
'''
# There is a name mangling in PTX codegen, so the original kernel names in Triton IR are not available in PTX/cubin.
assert src
for line in src.split('\n'):
line = line.strip()
if line.startswith(pattern):
return line.split()[-1]
def convert_type_repr(x):
# Currently we only capture the pointer type and assume the pointer is on global memory.
# TODO: Capture and support shared memory space
match = re.search(r'!tt\.ptr<([^,]+)', x)
if match is not None:
return '*' + convert_type_repr(match.group(1))
return x
def make_hash(fn, target, env_vars, device_backend, **kwargs):
if device_backend is None:
version_key = get_cuda_version_key()
else:
version_key = device_backend.get_version_key()
if isinstance(fn, JITFunction):
configs = kwargs["configs"]
signature = kwargs["signature"]
constants = kwargs.get("constants", dict())
num_warps = kwargs.get("num_warps", 4)
num_ctas = kwargs.get("num_ctas", 1)
num_stages = kwargs.get("num_stages", 3)
enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
enable_persistent = kwargs.get("enable_persistent", False)
debug = kwargs.get("debug", False)
# Get unique key for the compiled code
get_conf_key = lambda conf: (sorted(conf.divisible_by_16), sorted(conf.equal_to_1),
sorted(conf.ids_of_folded_args), sorted(conf.divisible_by_8))
configs_key = [get_conf_key(conf) for conf in configs]
env_vars_list = [f"{env_vars[k]}" for k in sorted(env_vars.keys())]
key = f"{fn.cache_key}-{version_key}-{''.join(signature.values())}-{configs_key}-{constants}-{num_warps}-{num_stages}-{num_ctas}-{num_stages}-{enable_warp_specialization}-{enable_persistent}-{debug}-{target}-{env_vars_list}"
return hashlib.md5(key.encode("utf-8")).hexdigest()
assert isinstance(fn, str)
ignore_version = kwargs.get('ignore_version', False)
if (ignore_version):
return hashlib.md5((Path(fn).read_text()).encode("utf-8")).hexdigest()
return hashlib.md5((Path(fn).read_text() + version_key).encode("utf-8")).hexdigest()
# - ^\s*tt\.func\s+ : match the start of the string, any leading whitespace, the keyword func,
# and any following whitespace
# - (public\s+)? : optionally match the keyword public and any following whitespace
# - (@\w+) : match an @ symbol followed by one or more word characters
# (letters, digits, or underscores), and capture it as group 1 (the function name)
# - (\((?:%\w+: \S+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\)) : match a pair of parentheses enclosing
# zero or more arguments separated by commas, and capture it as group 2 (the argument list)
# - (attributes \{[\S\s]+\})? : optionally match attributes enclosed in braces and capture it as group 3
mlir_prototype_pattern = r"^\s*tt\.func\s+(?:public\s+)?(@\w+)(\((?:%\w+: [\S\s]+(?: \{\S+ = \S+ : \S+\})?(?:, )?)*\))\s*(attributes \{[\S\s]+\})?\s+\{\s*$"
ptx_prototype_pattern = r"\.(?:visible|extern)\s+\.(?:entry|func)\s+(\w+)\s*\(([^)]*)\)"
prototype_pattern = {
"ttir": mlir_prototype_pattern,
"ttgir": mlir_prototype_pattern,
"ptx": ptx_prototype_pattern,
}
# - ((?:[^,\s<]+|<[^>]+>)+): Capturing group that matches one or more of either:
# [^,\s<]+: One or more characters that are not a comma, whitespace, or the < symbol.
# |: OR
# <[^>]+>: A string that starts with < and ends with >, containing any characters except > in between.
mlir_arg_type_pattern = r'%\w+: ((?:[^,\s<]+|<[^>]+>)+),?'
ptx_arg_type_pattern = r"\.param\s+\.(\w+)"
arg_type_pattern = {
"ttir": mlir_arg_type_pattern,
"ttgir": mlir_arg_type_pattern,
"ptx": ptx_arg_type_pattern,
}
if is_hip():
ttgir_num_warps_pattern = r'"triton_gpu_rocm.num-warps"\s?=\s?(\d+)\s?:'
else:
ttgir_num_warps_pattern = r'"triton_gpu.num-warps"\s?=\s?(\d+)\s?:'
def _get_jsonable_constants(constants):
def _is_jsonable(x):
try:
json.dumps(x)
return True
except (TypeError, OverflowError):
return False
serialized_constants = {}
for constant in constants:
if _is_jsonable(constants[constant]):
serialized_constants[constant] = constants[constant]
return serialized_constants
def _get_num_warps_from_ir_str(src: str):
# TODO(jlebar): Using a regex to get num-warps is a hack, and will break if
# e.g. someone has an instruction (not module) attribute named "num-warps".
num_warps_matches = re.findall(ttgir_num_warps_pattern, src)
assert len(num_warps_matches) == 1, "Expected exactly one match for num_warps"
num_warps = int(num_warps_matches[0])
# If warp specialization is enabled, the true number of warps from
# the perspective of e.g. CUDA is num-warps times the number of
# specialized groups.
num_warp_groups_matches = re.findall(r'"triton_gpu.num-warp-groups-per-cta"\s?=\s?(\d+)\s?:', src)
assert len(num_warp_groups_matches) == 0 or len(num_warp_groups_matches) == 1, \
"Expected triton_gpu.num-warp-groups-per-cta attribute to appear 0 or 1 times"
if num_warp_groups_matches:
num_warps *= int(num_warp_groups_matches[0])
return num_warps
def parse_mlir_module(path, context):
module = ir.parse_mlir_module(path, context)
# module takes ownership of the context
module.context = context
return module
instance_descriptor = namedtuple("instance_descriptor",
["divisible_by_16", "equal_to_1", "ids_of_folded_args", "divisible_by_8"],
defaults=[set(), set(), set(), set()])
def get_cuda_capability(capability):
if capability is None:
device = get_current_device()
capability = get_device_capability(device)
capability = capability[0] * 10 + capability[1]
return capability
def get_arch_default_num_warps(device_type):
if device_type in ["cuda", "hip"]:
num_warps = 4
else:
_device_backend = get_backend(device_type)
assert _device_backend
arch = _device_backend.get_architecture_descriptor()
num_warps = arch["num_warps"]
return num_warps
def get_arch_default_num_stages(device_type, capability=None):
if device_type == "cuda":
num_stages = 3 if get_cuda_capability(capability) >= 75 else 2
else:
_device_backend = get_backend(device_type)
assert _device_backend
arch = _device_backend.get_architecture_descriptor()
num_stages = arch["num_stages"]
return num_stages
def add_cuda_stages(target, extern_libs, stages):
stages["ptx"] = (lambda path: Path(path).read_text(), lambda src: llir_to_ptx(src, target))
stages["cubin"] = (lambda path: Path(path).read_bytes(), lambda src: ptx_to_cubin(src, target))
def compile(fn, **kwargs):
# Get device type to decide which backend should be used
device_type = kwargs.get("device_type", "cuda")
capability = kwargs.get("cc", None)
if is_hip():
device_type = "hip"
is_cuda = device_type == "cuda"
if is_hip():
is_cuda = False
context = ir.context()
constants = kwargs.get("constants", dict())
num_warps = kwargs.get("num_warps", get_arch_default_num_warps(device_type))
assert num_warps > 0 and (num_warps & (num_warps - 1)) == 0, "num_warps must be a power of 2"
num_ctas = kwargs.get("num_ctas", 1)
num_stages = kwargs.get("num_stages", get_arch_default_num_stages(device_type, capability=capability))
enable_fp_fusion = kwargs.get("enable_fp_fusion", True)
# TODO[shuhaoj]: Default should be to enable warp specialization once possible
enable_warp_specialization = kwargs.get("enable_warp_specialization", False)
# TODO[shuhaoj]: persistent can be decoupled with warp specialization
enable_persistent = kwargs.get("enable_persistent", enable_warp_specialization)
extern_libs = kwargs.get("extern_libs", dict())
if extern_libs is None:
extern_libs = dict()
debug = kwargs.get("debug", False)
# Flag to control whether to store mma layout directly
optimize_epilogue = False
if os.environ.get('OPTIMIZE_EPILOGUE', '') == '1':
optimize_epilogue = True
#
cluster_info = ClusterInfo()
if "clusterDims" in kwargs:
cluster_info.clusterDimX = kwargs["clusterDims"][0]
cluster_info.clusterDimY = kwargs["clusterDims"][1]
cluster_info.clusterDimZ = kwargs["clusterDims"][2]
tma_infos = TMAInfos()
# build architecture descriptor
if device_type == "cuda":
_device_backend = get_backend(device_type)
target = CudaTargetDescriptor(capability=get_cuda_capability(capability), num_warps=num_warps,
enable_fp_fusion=enable_fp_fusion)
else:
_device_backend = get_backend(device_type)
assert _device_backend
target = _device_backend.get_architecture_descriptor(**kwargs)
# build compilation stages
stages = dict()
stages["ast"] = (lambda path: fn, None)
stages["ttir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttir(
ast_to_ttir(src, signature, configs[0], constants, debug=debug, target=target), target))
if is_cuda:
stages["ttgir"] = (lambda path: parse_mlir_module(path, context), lambda src: optimize_ttgir(
ttir_to_ttgir(src, num_warps, num_ctas, target), num_stages, num_warps, num_ctas, target, cluster_info,
enable_warp_specialization, enable_persistent, optimize_epilogue))
stages["llir"] = (lambda path: Path(path).read_text(),
lambda src: ttgir_to_llir(src, extern_libs, target, tma_infos))
add_cuda_stages(target, extern_libs, stages)
elif device_type == "hip":
_device_backend.add_stages(target, extern_libs, stages, num_warps=num_warps, num_stages=num_stages)
else:
# pass the user's configuration to the backend device.
target["num_warps"] = num_warps
target["num_stages"] = num_stages
target["num_ctas"] = num_ctas
_device_backend.add_stages(target, extern_libs, stages)
# find out the signature of the function
if isinstance(fn, JITFunction):
configs = kwargs.get("configs", None)
signature = kwargs["signature"]
if configs is None:
configs = [instance_descriptor()]
assert len(configs) == 1
kwargs["configs"] = configs
name = fn.__name__
first_stage = 0
if isinstance(signature, str):
signature = {k: v.strip() for k, v in enumerate(signature.split(","))}
kwargs["signature"] = signature
else:
assert isinstance(fn, str)
_, ir_name = os.path.basename(fn).split(".")
src = Path(fn).read_text()
import re
match = re.search(prototype_pattern[ir_name], src, re.MULTILINE)
# TODO: support function attributes at group 3 (e.g., device function)
name, signature = match.group(1), match.group(2)
types = re.findall(arg_type_pattern[ir_name], signature)
if ir_name == 'ttgir':
num_warps_from_ir = _get_num_warps_from_ir_str(src)
assert "num_warps" not in kwargs or num_warps_from_ir == num_warps, "num_warps in ttgir does not match num_warps in compile"
num_warps = num_warps_from_ir
param_tys = [convert_type_repr(ty) for ty in types]
signature = {k: v for k, v in enumerate(param_tys)}
first_stage = list(stages.keys()).index(ir_name)
# create cache manager
fn_cache_manager = get_cache_manager(make_hash(fn, target, get_env_vars(), _device_backend, **kwargs))
# managers used to dump and override IR for debugging
enable_override = os.environ.get("TRITON_KERNEL_OVERRIDE", "0") == "1"
fn_override_manager = get_override_manager(
make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))
fn_dump_manager = get_dump_manager(
make_hash(fn, target, get_env_vars(), _device_backend, **kwargs, ignore_version=True))
# determine name and extension type of provided function
if isinstance(fn, JITFunction):
name, ext = fn.__name__, "ast"
else:
name, ext = os.path.basename(fn).split(".")
# load metadata if any
metadata = None
metadata_filename = f"{name}.json"
# The group is addressed by the metadata
metadata_group = fn_cache_manager.get_group(metadata_filename) or {}
metadata_path = metadata_group.get(metadata_filename)
if metadata_path is not None:
with open(metadata_path) as f:
metadata = json.load(f)
if 'tensormaps_info' in metadata:
metadata['tensormaps_info'] = [InfoFromBackendForTensorMap(e) for e in metadata['tensormaps_info']]
else:
metadata = {
"num_warps": num_warps,
"num_ctas": num_ctas,
"num_stages": num_stages,
"enable_warp_specialization": enable_warp_specialization,
"enable_persistent": enable_persistent,
"constants": _get_jsonable_constants(constants),
"debug": debug,
"target": target,
}
metadata.update(get_env_vars())
if ext == "ptx":
assert "shared" in kwargs, "ptx compilation must provide shared memory size"
metadata["shared"] = kwargs["shared"]
# Add device type to meta information
metadata["device_type"] = device_type
first_stage = list(stages.keys()).index(ext)
asm = LazyDict()
module = fn
# run compilation pipeline and populate metadata
for ir_name, (parse, compile_kernel) in list(stages.items())[first_stage:]:
ir_filename = f"{name}.{ir_name}"
if ir_name == ext:
next_module = parse(fn)
else:
path = metadata_group.get(ir_filename)
if path is None:
next_module = compile_kernel(module)
if ir_name == "amdgcn":
extra_file_name = f"{name}.hsaco_path"
metadata_group[ir_filename] = fn_cache_manager.put(next_module[0], ir_filename)
metadata_group[extra_file_name] = fn_cache_manager.put(next_module[1], extra_file_name)
else:
metadata_group[ir_filename] = fn_cache_manager.put(next_module, ir_filename)
fn_dump_manager.put(next_module, ir_filename)
if (enable_override and fn_override_manager.has_file(ir_filename)):
print(f"\nOverriding kernel with file {ir_filename}")
full_name = fn_override_manager.get_file(ir_filename)
next_module = parse(full_name)
else:
if ir_name == "amdgcn":
extra_file_name = f"{name}.hsaco_path"
hasco_path = metadata_group.get(extra_file_name)
assert hasco_path is not None, "Expected to have hsaco_path in metadata when we have the amdgcn"
next_module = (parse(path), parse(hasco_path))
else:
next_module = parse(path)
if ir_name == "cubin":
asm[ir_name] = next_module
asm["sass"] = lambda: get_sass(next_module)
elif ir_name == "amdgcn":
asm[ir_name] = str(next_module[0])
else:
asm[ir_name] = str(next_module)
if ir_name == "llir" and "shared" not in metadata:
if is_hip():
metadata["shared"] = _device_backend.get_shared_memory_size(module)
else:
metadata["shared"] = get_shared_memory_size(module)
if ir_name == "ttgir":
if is_hip():
metadata["num_warps"] = _device_backend.get_num_warps(next_module)
else:
metadata["enable_warp_specialization"] = ir.is_ws_supported(next_module)
if metadata["enable_warp_specialization"]:
metadata["num_warps"] = get_num_warps(next_module)
if ir_name == "ptx":
metadata["name"] = get_kernel_name(next_module, pattern='// .globl')
if ir_name == "amdgcn":
metadata["name"] = get_kernel_name(next_module[0], pattern='.globl')
asm["hsaco_path"] = next_module[1]
if not is_cuda and not is_hip():
_device_backend.add_meta_info(ir_name, module, next_module, metadata, asm)
module = next_module
ids_of_folded_args = tuple([int(k) for k in configs[0].ids_of_folded_args]) if isinstance(fn, JITFunction) else ()
if "clusterDims" not in metadata:
metadata["clusterDims"] = [cluster_info.clusterDimX, cluster_info.clusterDimY, cluster_info.clusterDimZ]
if len(tma_infos) > 0:
metadata["tensormaps_info"] = parse_tma_info(tma_infos, ids_of_folded_args)
# set constant
if "tensormaps_info" in metadata:
for i, _ in enumerate(metadata["tensormaps_info"]):
metadata["tensormaps_info"][i].ids_of_folded_args = ids_of_folded_args
ids_of_tensormaps = get_ids_of_tensormaps(metadata.get("tensormaps_info", None))
if isinstance(fn, JITFunction) and "tensormaps_info" in metadata:
fn.tensormaps_info = metadata["tensormaps_info"]
ids_of_const_exprs = tuple(fn.constexprs) if isinstance(fn, JITFunction) else ()
ids = {
"ids_of_tensormaps": ids_of_tensormaps, "ids_of_folded_args": ids_of_folded_args, "ids_of_const_exprs":
ids_of_const_exprs
}
# cache manager
if is_cuda:
so_path = make_stub(name, signature, constants, ids, enable_warp_specialization=enable_warp_specialization)
else:
so_path = _device_backend.make_launcher_stub(name, signature, constants, ids)
# write-back metadata, if it didn't come from the cache
if metadata_path is None:
metadata_group[metadata_filename] = fn_cache_manager.put(json.dumps(metadata, default=vars), metadata_filename,
binary=False)
fn_cache_manager.put_group(metadata_filename, metadata_group)
# return handle to compiled kernel
return CompiledKernel(fn, so_path, metadata, asm)
class CompiledKernel:
# Hooks for external tools to monitor the execution of triton kernels
launch_enter_hook = None
launch_exit_hook = None
tensormap_manager = TensorMapManager()
def __init__(self, fn, so_path, metadata, asm):
# initialize launcher
import importlib.util
spec = importlib.util.spec_from_file_location("__triton_launcher", so_path)
mod = importlib.util.module_from_spec(spec)
self.fn = fn
spec.loader.exec_module(mod)
self.c_wrapper = getattr(mod, "launch")
# initialize metadata
self.shared = metadata["shared"]
self.num_warps = metadata["num_warps"]
if "threads_per_warp" in metadata:
self.threads_per_warp = metadata["threads_per_warp"]
self.num_ctas = metadata["num_ctas"]
self.num_stages = metadata["num_stages"]
self.clusterDims = metadata["clusterDims"]
if "tensormaps_info" in metadata:
self.tensormaps_info = metadata["tensormaps_info"]
self.constants = metadata["constants"]
self.device_type = metadata["device_type"]
self.device_backend = get_backend(self.device_type) if self.device_type not in ["cuda"] else None
# initialize asm dict
self.asm = asm
# binaries are lazily initialized
# because it involves doing runtime things
# (e.g., checking amount of shared memory on current device)
self.metadata = metadata
self.cu_module = None
self.cu_function = None
def _init_handles(self):
if self.cu_module is not None:
return
if self.device_type in ["cuda"]:
device = get_current_device()
bin_path = {driver.HIP: "hsaco_path", driver.CUDA: "cubin"}[driver.backend]
max_shared = driver.utils.get_device_properties(device)["max_shared_mem"]
fn_load_binary = driver.utils.load_binary
else:
assert self.device_backend
device = self.device_backend.get_current_device()
bin_path = self.device_backend.get_kernel_bin()
max_shared = self.device_backend.get_device_properties(device)["max_shared_mem"]
fn_load_binary = self.device_backend.get_load_binary_fn()
if self.shared > max_shared:
raise OutOfResources(self.shared, max_shared, "shared memory")
mod, func, n_regs, n_spills = fn_load_binary(self.metadata["name"], self.asm[bin_path], self.shared, device)
self.n_spills = n_spills
self.n_regs = n_regs
self.cu_module = mod
self.cu_function = func
def __getattribute__(self, name):
if name == 'c_wrapper':
self._init_handles()
return super().__getattribute__(name)
# capture args and expand args with cutensormap*
def assemble_tensormap_to_arg(self, args):
args_with_tma = list(args)
if hasattr(self, 'tensormaps_info'):
# tuple for hashable
args_ptr = tuple([arg.data_ptr() if hasattr(arg, 'data_ptr') else arg for arg in args])
for i, e in enumerate(self.tensormaps_info):
args_with_tma.append(CompiledKernel.tensormap_manager[(e, args_ptr)])
return args_with_tma
def __getitem__(self, grid):
self._init_handles()
def runner(*args, stream=None):
args_expand = self.assemble_tensormap_to_arg(args)
if stream is None:
if self.device_type in ["cuda"]:
stream = get_cuda_stream()
else:
stream = get_backend(self.device_type).get_stream(None)
self.c_wrapper(grid[0], grid[1], grid[2], self.num_warps, self.num_ctas, self.clusterDims[0],
self.clusterDims[1], self.clusterDims[2], self.shared, stream, self.cu_function,
CompiledKernel.launch_enter_hook, CompiledKernel.launch_exit_hook, self, *args_expand)
return runner
|