File size: 18,258 Bytes
9f700b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import functools
import os
import subprocess
import sys
from contextlib import contextmanager
from typing import Any, Dict, List
from . import language as tl
from ._C.libtriton.triton import runtime
def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
def do_bench_cudagraph(fn, rep=20, grad_to_none=None):
import torch
"""
Benchmark the runtime of the provided function.
:param fn: Function to benchmark
:type fn: Callable
:param rep: Repetition time (in ms)
:type rep: int
:param grad_to_none: Reset the gradient of the provided tensor to None
:type grad_to_none: torch.tensor, optional
"""
if torch.cuda.current_stream() == torch.cuda.default_stream():
raise RuntimeError("Cannot capture graph in default stream. Please use side stream in benchmark code.")
# warmup
fn()
# step 1 - we estimate the amount of time the kernel call takes
# NOTE: this estimate isn't super accurate because the GPU isn't warmed up at this point
# but it is probably good enough
if grad_to_none is not None:
for x in grad_to_none:
x.detach_()
x.requires_grad_(True)
x.grad = None
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
fn()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
g.replay()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event)
n_repeat = max(1, int(rep / estimate_ms))
# step 2 - construct a cuda graph with `n_repeat` unrolled function calls to minimize
# host overhead
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
for i in range(n_repeat):
if grad_to_none is not None:
for x in grad_to_none:
x.grad = None
fn()
torch.cuda.synchronize()
# measure time and return
ret = []
n_retries = 10
for i in range(n_retries):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
g.replay()
end_event.record()
torch.cuda.synchronize()
ret += [start_event.elapsed_time(end_event) / n_repeat]
return torch.mean(torch.tensor(ret)).item()
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, quantiles=None, fast_flush=True, return_mode="mean"):
assert return_mode in ["min", "max", "mean", "median"]
import torch
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
:param fn: Function to benchmark
:type fn: Callable
:param warmup: Warmup time (in ms)
:type warmup: int
:param rep: Repetition time (in ms)
:type rep: int
:param grad_to_none: Reset the gradient of the provided tensor to None
:type grad_to_none: torch.tensor, optional
:param quantiles: Performance percentile to return in addition to the median.
:type quantiles: list[float]
:param fast_flush: Use faster kernel to flush L2 between measurements
:type fast_flush: bool
"""
fn()
torch.cuda.synchronize()
# We maintain a buffer of 256 MB that we clear
# before each kernel call to make sure that the L2
# doesn't contain any input data before the run
if fast_flush:
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device='cuda')
else:
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
# Estimate the runtime of the function
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(5):
cache.zero_()
fn()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup / estimate_ms))
n_repeat = max(1, int(rep / estimate_ms))
start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
# Warm-up
for _ in range(n_warmup):
fn()
# Benchmark
for i in range(n_repeat):
# we don't want `fn` to accumulate gradient values
# if it contains a backward pass. So we clear the
# provided gradients
if grad_to_none is not None:
for x in grad_to_none:
x.grad = None
# we clear the L2 cache before each run
cache.zero_()
# record time of `fn`
start_event[i].record()
fn()
end_event[i].record()
# Record clocks
torch.cuda.synchronize()
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)], dtype=torch.float)
if quantiles is not None:
ret = torch.quantile(times, torch.tensor(quantiles, dtype=torch.float)).tolist()
if len(ret) == 1:
ret = ret[0]
return ret
return getattr(torch, return_mode)(times).item()
def assert_close(x, y, atol=None, rtol=None, err_msg=''):
import numpy as np
import torch
# canonicalize arguments to be tensors
if not isinstance(x, torch.Tensor):
x = torch.tensor(x)
if not isinstance(y, torch.Tensor):
y = torch.tensor(y)
# absolute tolerance
if atol is None:
atol = 1e-2
atol = atol(x.dtype) if callable(atol) else atol
# relative tolerance hook
if rtol is None:
rtol = 0.
rtol = rtol(x.dtype) if callable(rtol) else rtol
# we use numpy instead of pytorch
# as it seems more memory efficient
# pytorch tends to oom on large tensors
if isinstance(x, torch.Tensor):
if x.dtype == torch.bfloat16:
x = x.float()
x = x.cpu().detach().numpy()
if isinstance(y, torch.Tensor):
if y.dtype == torch.bfloat16:
y = y.float()
y = y.cpu().detach().numpy()
# we handle size==1 case separately as we can
# provide better error message there
if x.size > 1 or y.size > 1:
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol, equal_nan=True)
return
if not np.allclose(x, y, atol=atol, rtol=rtol):
raise AssertionError(f'{err_msg} {x} is not close to {y} (atol={atol}, rtol={rtol})')
class Benchmark:
"""
This class is used by the :code:`perf_report` function to generate line plots with a concise API.
"""
def __init__(
self,
x_names: List[str],
x_vals: List[Any],
line_arg: str,
line_vals: List[Any],
line_names: List[str],
plot_name: str,
args: Dict[str, Any],
xlabel: str = '',
ylabel: str = '',
x_log: bool = False,
y_log: bool = False,
color=None,
styles=None,
):
"""
Constructor.
x_vals can be a list of scalars or a list of tuples/lists. If x_vals is a list
of scalars and there are multiple x_names, all arguments will have the same value.
If x_vals is a list of tuples/lists, each element should have the same length as
x_names.
:param x_names: Name of the arguments that should appear on the x axis of the plot.
:type x_names: List[str]
:param x_vals: List of values to use for the arguments in :code:`x_names`.
:type x_vals: List[Any]
:param line_arg: Argument name for which different values correspond to different lines in the plot.
:type line_arg: str
:param line_vals: List of values to use for the arguments in :code:`line_arg`.
:type line_vals: List[Any]
:param line_names: Label names for the different lines.
:type line_names: List[str]
:param plot_name: Name of the plot.
:type plot_name: str
:param args: Dictionary of keyword arguments to remain fixed throughout the benchmark.
:type args: Dict[str, Any]
:param xlabel: Label for the x axis of the plot.
:type xlabel: str, optional
:param ylabel: Label for the y axis of the plot.
:type ylabel: str, optional
:param x_log: Whether the x axis should be log scale.
:type x_log: bool, optional
:param y_log: Whether the y axis should be log scale.
:type y_log: bool, optional
"""
self.x_names = x_names
self.x_vals = x_vals
self.x_log = x_log
self.line_arg = line_arg
self.line_vals = line_vals
self.line_names = line_names
self.y_log = y_log
self.styles = styles
# plot info
self.xlabel = xlabel
self.ylabel = ylabel
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
self.benchmarks = benchmarks
def _run(self, bench: Benchmark, save_path: str, show_plots: bool, print_data: bool, diff_col=False, **kwrags):
import os
import matplotlib.pyplot as plt
import pandas as pd
y_mean = bench.line_names
y_min = [f'{x}-min' for x in bench.line_names]
y_max = [f'{x}-max' for x in bench.line_names]
x_names = list(bench.x_names)
df = pd.DataFrame(columns=x_names + y_mean + y_min + y_max)
for x in bench.x_vals:
# x can be a single value or a sequence of values.
if not isinstance(x, (list, tuple)):
x = [x for _ in x_names]
if len(x) != len(x_names):
raise ValueError(f"Expected {len(x_names)} values, got {x}")
x_args = dict(zip(x_names, x))
row_mean, row_min, row_max = [], [], []
for y in bench.line_vals:
ret = self.fn(**x_args, **{bench.line_arg: y}, **bench.args, **kwrags)
try:
y_mean, y_min, y_max = ret
except TypeError:
y_mean, y_min, y_max = ret, None, None
row_mean += [y_mean]
row_min += [y_min]
row_max += [y_max]
df.loc[len(df)] = list(x) + row_mean + row_min + row_max
if bench.plot_name:
plt.figure()
ax = plt.subplot()
# Plot first x value on x axis if there are multiple.
first_x = x_names[0]
for i, y in enumerate(bench.line_names):
y_min, y_max = df[y + '-min'], df[y + '-max']
col = bench.styles[i][0] if bench.styles else None
sty = bench.styles[i][1] if bench.styles else None
ax.plot(df[first_x], df[y], label=y, color=col, ls=sty)
if not y_min.isnull().all() and not y_max.isnull().all():
y_min = y_min.astype(float)
y_max = y_max.astype(float)
ax.fill_between(df[first_x], y_min, y_max, alpha=0.15, color=col)
ax.legend()
ax.set_xlabel(bench.xlabel or first_x)
ax.set_ylabel(bench.ylabel)
# ax.set_title(bench.plot_name)
ax.set_xscale("log" if bench.x_log else "linear")
ax.set_yscale("log" if bench.y_log else "linear")
if show_plots:
plt.show()
if save_path:
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png"))
df = df[x_names + bench.line_names]
if diff_col and df.shape[1] == 2:
col0, col1 = df.columns.tolist()
df['Diff'] = df[col1] - df[col0]
if print_data:
print(bench.plot_name + ':')
print(df)
if save_path:
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
return df
def run(self, show_plots=False, print_data=False, save_path='', return_df=False, **kwargs):
has_single_bench = isinstance(self.benchmarks, Benchmark)
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks
result_dfs = []
if save_path:
html = open(os.path.join(save_path, "results.html"), "w")
html.write("<html><body>\n")
for bench in benchmarks:
result_dfs.append(self._run(bench, save_path, show_plots, print_data, **kwargs))
if save_path:
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
if save_path:
html.write("</body></html>\n")
if return_df:
if has_single_bench:
return result_dfs[0]
else:
return result_dfs
return None
def perf_report(benchmarks):
"""
Mark a function for benchmarking. The benchmark can then be executed by using the :code:`.run` method on the return value.
:param benchmarks: Benchmarking configurations.
:type benchmarks: List of :class:`Benchmark`
"""
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper
def get_dram_gbps(backend=None, device=None):
''' return DRAM bandwidth in GB/s '''
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
mem_clock_khz = driver.utils.get_device_properties(device)["mem_clock_rate"] # in kHz
bus_width = driver.utils.get_device_properties(device)["mem_bus_width"]
bw_gbps = mem_clock_khz * bus_width * 2 / 1e6 / 8 # In GB/s
return bw_gbps
def get_max_tensorcore_tflops(dtype, clock_rate, backend=None, device=None):
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4
capability = torch.cuda.get_device_capability(device)
if capability[0] < 8:
assert dtype == torch.float16
ops_per_sub_core = 256 # 2 4x4x4 Tensor Cores
else:
if dtype in [torch.float32, torch.int32]:
ops_per_sub_core = 256
elif dtype in [torch.float16, torch.bfloat16, torch.int16]:
ops_per_sub_core = 512
elif dtype in [torch.int8, tl.float8e4nv, tl.float8e4b15, tl.float8e5]:
ops_per_sub_core = 1024
else:
raise RuntimeError("dtype not supported")
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9
return tflops
# create decorator that wraps test function into
# a cuda-memcheck system call
def cuda_memcheck(**target_kwargs):
def decorator(test_fn):
@functools.wraps(test_fn)
def wrapper(*args, **kwargs):
import psutil
ppid_name = psutil.Process(os.getppid()).name()
run_cuda_memcheck = target_kwargs.items() <= kwargs.items()
if run_cuda_memcheck and ppid_name != "cuda-memcheck":
path = os.path.realpath(test_fn.__globals__["__file__"])
# get path of current file
env = {"PATH": os.environ["PATH"], "PYTORCH_NO_CUDA_MEMORY_CACHING": "1"}
assert 'request' in kwargs, "memcheck'ed test must have a (possibly unused) `request` fixture"
test_id = kwargs['request'].node.callspec.id
cmd = f"{path}::{test_fn.__name__}[{test_id}]"
out = subprocess.run(["cuda-memcheck", "pytest", "-vs", cmd], capture_output=True, env=env)
assert out.returncode == 0, "cuda-memcheck returned an error: bounds checking failed"
assert "ERROR SUMMARY: 0 errors" in str(out.stdout)
else:
test_fn(*args, **kwargs)
return wrapper
return decorator
@contextmanager
def set_gpu_clock(ref_sm_clock=1350, ref_mem_clock=1215):
try:
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "1"])
subprocess.check_output([
"nvidia-smi",
"-i",
"0",
f"--lock-gpu-clocks={ref_sm_clock},{ref_sm_clock}",
])
subprocess.check_output([
"nvidia-smi",
"-i",
"0",
f"--lock-memory-clocks={ref_mem_clock},{ref_mem_clock}",
])
cur_sm_clock = nvsmi(["clocks.current.sm"])[0]
cur_mem_clock = nvsmi(["clocks.current.memory"])[0]
assert abs(cur_sm_clock - ref_sm_clock) < 10, f"GPU SMs must run at {ref_sm_clock} MHz"
assert abs(cur_mem_clock - ref_mem_clock) < 10, f"GPU SMs must run at {ref_mem_clock} MHz"
tflops = 1e-6 * 2 * 108 * 4 * 256 * ref_sm_clock
gbps = 640 * 2 * ref_mem_clock * 1e-3
yield tflops, gbps
finally:
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "0"])
subprocess.check_output(["nvidia-smi", "-i", "0", "-rgc"])
subprocess.check_output(["nvidia-smi", "-i", "0", "-rmc"])
def get_max_simd_tflops(dtype, clock_rate, backend=None, device=None):
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
if dtype == torch.float32:
ops_per_sub_core = 32 # 2*16
elif dtype == torch.float16:
ops_per_sub_core = 64
else:
raise RuntimeError("dtype not supported")
else:
if dtype == torch.float32:
ops_per_sub_core = 32
elif dtype in [torch.float16, torch.bfloat16]:
ops_per_sub_core = 64
else:
raise RuntimeError("dtype not supported")
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9
return tflops
|