File size: 10,118 Bytes
fab61cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import hashlib
import os
import tempfile
from ..common import _build
from ..common.backend import get_cuda_version_key
from ..common.build import is_hip
from ..runtime.cache import get_cache_manager
from .utils import generate_cu_signature
# ----- stub --------
def make_so_cache_key(version_hash, signature, constants, ids, **kwargs):
# Get unique key for the compiled code
signature = {k: 'ptr' if v[0] == '*' else v for k, v in signature.items()}
key = f"{version_hash}-{''.join(signature.values())}-{constants}-{ids}"
for kw in kwargs:
key = f"{key}-{kwargs.get(kw)}"
key = hashlib.md5(key.encode("utf-8")).hexdigest()
return key
def make_stub(name, signature, constants, ids, **kwargs):
# name of files that are cached
so_cache_key = make_so_cache_key(get_cuda_version_key(), signature, constants, ids, **kwargs)
so_cache_manager = get_cache_manager(so_cache_key)
so_name = f"{name}.so"
# retrieve stub from cache if it exists
cache_path = so_cache_manager.get_file(so_name)
if cache_path is None:
with tempfile.TemporaryDirectory() as tmpdir:
src = generate_launcher(constants, signature, ids)
src_path = os.path.join(tmpdir, "main.c")
with open(src_path, "w") as f:
f.write(src)
so = _build(name, src_path, tmpdir)
with open(so, "rb") as f:
return so_cache_manager.put(f.read(), so_name, binary=True)
else:
return cache_path
# ----- source code generation --------
def ty_to_cpp(ty):
if ty[0] == '*':
return "hipDeviceptr_t" if is_hip() else "CUdeviceptr"
return {
"i1": "int32_t",
"i8": "int8_t",
"i16": "int16_t",
"i32": "int32_t",
"i64": "int64_t",
"u32": "uint32_t",
"u64": "uint64_t",
"fp16": "float",
"bf16": "float",
"fp32": "float",
"f32": "float",
"fp64": "double",
}[ty]
def generate_launcher(constants, signature, ids):
# Record the end of regular arguments;
# subsequent arguments are architecture-specific descriptors, such as tensor descriptors for CUDA.
signature, desc_start_idx = generate_cu_signature(constants, signature, ids)
arg_decls = ', '.join(f"{ty_to_cpp(ty)} arg{i}" for i, ty in signature.items())
def _extracted_type(ty):
if ty[0] == '*':
return "PyObject*"
return {
'i1': 'int32_t',
'i32': 'int32_t',
'i64': 'int64_t',
'u32': 'uint32_t',
'u64': 'uint64_t',
'fp16': 'float',
'bf16': 'float',
'fp32': 'float',
'f32': 'float',
'fp64': 'double',
}[ty]
def format_of(ty):
return {
"PyObject*": "O",
"float": "f",
"double": "d",
"long": "l",
"uint32_t": "I",
"int32_t": "i",
"uint64_t": "K",
"int64_t": "L",
}[ty]
format = "iiiiiiiiiKKOOO" + ''.join([format_of(_extracted_type(ty)) for ty in signature.values()])
# generate glue code
folded_without_constexprs = [c for c in ids['ids_of_folded_args'] if c not in ids['ids_of_const_exprs']]
params = [
i for i in signature.keys()
if i >= desc_start_idx or (i not in constants and i not in folded_without_constexprs)
]
src = f"""
#include \"cuda.h\"
#include <stdbool.h>
#include <Python.h>
#include <dlfcn.h>
static inline void gpuAssert(CUresult code, const char *file, int line)
{{
if (code != CUDA_SUCCESS)
{{
const char* prefix = "Triton Error [CUDA]: ";
const char* str;
cuGetErrorString(code, &str);
char err[1024] = {{0}};
strcat(err, prefix);
strcat(err, str);
PyGILState_STATE gil_state;
gil_state = PyGILState_Ensure();
PyErr_SetString(PyExc_RuntimeError, err);
PyGILState_Release(gil_state);
}}
}}
#define CUDA_CHECK(ans) {{ gpuAssert((ans), __FILE__, __LINE__); }}
typedef CUresult (*cuLaunchKernelEx_t)(const CUlaunchConfig* config, CUfunction f, void** kernelParams, void** extra);
static cuLaunchKernelEx_t getLaunchKernelExHandle() {{
// Open the shared library
void* handle = dlopen("libcuda.so", RTLD_LAZY);
if (!handle) {{
PyErr_SetString(PyExc_RuntimeError, "Failed to open libcuda.so");
return NULL;
}}
// Clear any existing error
dlerror();
cuLaunchKernelEx_t cuLaunchKernelExHandle = (cuLaunchKernelEx_t)dlsym(handle, "cuLaunchKernelEx");
// Check for errors
const char *dlsym_error = dlerror();
if (dlsym_error) {{
PyErr_SetString(PyExc_RuntimeError, "Failed to retrieve cuLaunchKernelEx from libcuda.so");
return NULL;
}}
return cuLaunchKernelExHandle;
}}
static void _launch(int gridX, int gridY, int gridZ, int num_warps, int num_ctas, int clusterDimX, int clusterDimY, int clusterDimZ, int shared_memory, CUstream stream, CUfunction function{', ' + arg_decls if len(arg_decls) > 0 else ''}) {{
void *params[] = {{ {', '.join(f"&arg{i}" for i in params)} }};
if (gridX*gridY*gridZ > 0) {{
if (num_ctas == 1) {{
CUDA_CHECK(cuLaunchKernel(function, gridX, gridY, gridZ, 32*num_warps, 1, 1, shared_memory, stream, params, 0));
}} else {{
CUlaunchAttribute launchAttr[2];
launchAttr[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION;
launchAttr[0].value.clusterDim.x = clusterDimX;
launchAttr[0].value.clusterDim.y = clusterDimY;
launchAttr[0].value.clusterDim.z = clusterDimZ;
launchAttr[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE;
launchAttr[1].value.clusterSchedulingPolicyPreference = CU_CLUSTER_SCHEDULING_POLICY_SPREAD;
CUlaunchConfig config;
config.gridDimX = gridX * clusterDimX;
config.gridDimY = gridY * clusterDimY;
config.gridDimZ = gridZ * clusterDimZ;
config.blockDimX = 32 * num_warps;
config.blockDimY = 1;
config.blockDimZ = 1;
config.sharedMemBytes = shared_memory;
config.hStream = stream;
config.attrs = launchAttr;
config.numAttrs = 2;
static cuLaunchKernelEx_t cuLaunchKernelExHandle = NULL;
if (cuLaunchKernelExHandle == NULL) {{
cuLaunchKernelExHandle = getLaunchKernelExHandle();
}}
CUDA_CHECK(cuLaunchKernelExHandle(&config, function, params, 0));
}}
}}
}}
typedef struct _DevicePtrInfo {{
CUdeviceptr dev_ptr;
bool valid;
}} DevicePtrInfo;
static inline DevicePtrInfo getPointer(PyObject *obj, int idx) {{
DevicePtrInfo ptr_info;
ptr_info.dev_ptr = 0;
ptr_info.valid = true;
if (PyLong_Check(obj)) {{
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(obj);
return ptr_info;
}}
if (obj == Py_None) {{
// valid nullptr
return ptr_info;
}}
PyObject *ptr = PyObject_GetAttrString(obj, "data_ptr");
if(ptr){{
PyObject *empty_tuple = PyTuple_New(0);
PyObject *ret = PyObject_Call(ptr, empty_tuple, NULL);
Py_DECREF(empty_tuple);
Py_DECREF(ptr);
if (!PyLong_Check(ret)) {{
PyErr_SetString(PyExc_TypeError, "data_ptr method of Pointer object must return 64-bit int");
ptr_info.valid = false;
return ptr_info;
}}
ptr_info.dev_ptr = PyLong_AsUnsignedLongLong(ret);
if(!ptr_info.dev_ptr)
return ptr_info;
uint64_t dev_ptr;
int status = cuPointerGetAttribute(&dev_ptr, CU_POINTER_ATTRIBUTE_DEVICE_POINTER, ptr_info.dev_ptr);
if (status == CUDA_ERROR_INVALID_VALUE) {{
PyErr_Format(PyExc_ValueError,
"Pointer argument (at %d) cannot be accessed from Triton (cpu tensor?)", idx);
ptr_info.valid = false;
}}
ptr_info.dev_ptr = dev_ptr;
Py_DECREF(ret); // Thanks ChatGPT!
return ptr_info;
}}
PyErr_SetString(PyExc_TypeError, "Pointer argument must be either uint64 or have data_ptr method");
ptr_info.valid = false;
return ptr_info;
}}
static PyObject* launch(PyObject* self, PyObject* args) {{
int gridX, gridY, gridZ;
uint64_t _stream;
uint64_t _function;
int num_warps;
int num_ctas;
int clusterDimX;
int clusterDimY;
int clusterDimZ;
int shared_memory;
PyObject *launch_enter_hook = NULL;
PyObject *launch_exit_hook = NULL;
PyObject *compiled_kernel = NULL;
{' '.join([f"{_extracted_type(ty)} _arg{i}; " for i, ty in signature.items()])}
if(!PyArg_ParseTuple(args, \"{format}\", &gridX, &gridY, &gridZ, &num_warps, &num_ctas, &clusterDimX, &clusterDimY, &clusterDimZ, &shared_memory, &_stream, &_function, &launch_enter_hook, &launch_exit_hook, &compiled_kernel{', ' + ', '.join(f"&_arg{i}" for i, ty in signature.items()) if len(signature) > 0 else ''})) {{
return NULL;
}}
if (launch_enter_hook != Py_None && !PyObject_CallObject(launch_enter_hook, args)) {{
return NULL;
}}
// raise exception asap
{"; ".join([f"DevicePtrInfo ptr_info{i} = getPointer(_arg{i}, {i}); if (!ptr_info{i}.valid) return NULL;" if ty[0] == "*" else "" for i, ty in signature.items()])};
Py_BEGIN_ALLOW_THREADS;
_launch(gridX, gridY, gridZ, num_warps, num_ctas, clusterDimX, clusterDimY, clusterDimZ, shared_memory, (CUstream)_stream, (CUfunction)_function{', ' + ', '.join(f"ptr_info{i}.dev_ptr" if ty[0]=="*" else f"_arg{i}"for i, ty in signature.items()) if len(signature) > 0 else ''});
Py_END_ALLOW_THREADS;
if (PyErr_Occurred()) {{
return NULL;
}}
if (launch_exit_hook != Py_None && !PyObject_CallObject(launch_exit_hook, args)) {{
return NULL;
}}
// return None
Py_INCREF(Py_None);
return Py_None;
}}
static PyMethodDef ModuleMethods[] = {{
{{"launch", launch, METH_VARARGS, "Entry point for all kernels with this signature"}},
{{NULL, NULL, 0, NULL}} // sentinel
}};
static struct PyModuleDef ModuleDef = {{
PyModuleDef_HEAD_INIT,
\"__triton_launcher\",
NULL, //documentation
-1, //size
ModuleMethods
}};
PyMODINIT_FUNC PyInit___triton_launcher(void) {{
PyObject *m = PyModule_Create(&ModuleDef);
if(m == NULL) {{
return NULL;
}}
PyModule_AddFunctions(m, ModuleMethods);
return m;
}}
"""
return src
|