File size: 12,703 Bytes
fab61cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright (c) 2023 NVIDIA Corporation & Affiliates. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import annotations
from ..runtime import driver
def generate_cu_signature(constants, signature, ids):
# CUtensorMap*s are always the last arguments
num_regular_signatures = max(signature.keys()) + 1 if len(signature) > 0 else 0
if ids["ids_of_tensormaps"] is not None:
for i, _ in enumerate(ids["ids_of_tensormaps"]):
signature[num_regular_signatures + i] = '*CUtensorMap'
return signature, num_regular_signatures
def dummy_tensormaps_info(n=2):
ret = []
for i in range(n):
ret.append(InfoFromBackendForTensorMap(dummy=True))
return ret
def parse_tma_info(infos, ids_of_folded_args):
ret = []
for info in infos:
e = InfoFromBackendForTensorMap(infos=info)
e.ids_of_folded_args = ids_of_folded_args
ret.append(e)
return ret
def get_tma_mapping(tensormaps_info):
ret = {}
if tensormaps_info is not None:
for i, e in enumerate(tensormaps_info):
ret.update(e.get_address_tma_mapping())
else:
ret = None
return ret
def get_ids_of_tensormaps(tensormaps_info):
ret = None
# order is not relevant
if tensormaps_info is not None:
ret = [e.get_id_of_tensormap() for e in tensormaps_info]
return ret
# decouple information for tensormap from backend
# please ignore the naming style, xx_yy is compiler.py style, xxYy is to comply with cuda tensormap style
# mixing style is for readability
class InfoFromBackendForTensorMap:
N = 2
n = 0
ntma = 0
def __init__(self, infos=None, dummy=False):
self.dummy = dummy
self.ids_of_folded_args = ()
if not dummy and not isinstance(infos, dict):
self._extract_info_from_backend(infos)
elif not dummy and isinstance(infos, dict):
self._extract_info_from_dict(infos)
elif dummy:
self._dummy()
def _dummy(self):
assert InfoFromBackendForTensorMap.n < InfoFromBackendForTensorMap.N
if InfoFromBackendForTensorMap.n == 0:
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
self.tensorRank = 4
self.globalAddressArgIdx = 0
self.globalStridesArgIdx = [7, 6, -1, -1]
self.globalDimsArgIdx = [5, 3, -1, -1]
self.boxDims = [16, 64, 1, 1]
self.elementStrides = [1, 1, 1, 1]
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
self.TMADescArgIdx = 11
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
InfoFromBackendForTensorMap.n += 1
return
if InfoFromBackendForTensorMap.n == 1:
self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
self.tensorRank = 4
self.globalAddressArgIdx = 1
self.globalStridesArgIdx = [7, 6, -1, -1]
self.globalDimsArgIdx = [5, 3, -1, -1]
self.boxDims = [16, 64, 1, 1]
self.elementStrides = [1, 1, 1, 1]
self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
self.TMADescArgIdx = 12
self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
InfoFromBackendForTensorMap.n += 1
return
def _extract_info_from_backend(self, infos):
self.tensorDataType = infos.tensorDataType
self.tensorRank = infos.tensorRank
self.globalAddressArgIdx = infos.globalAddressArgIdx
self.globalStridesArgIdx = infos.globalStridesArgIdx
self.globalDimsArgIdx = infos.globalDimsArgIdx
self.boxDims = infos.boxDims
self.elementStrides = infos.elementStrides
self.interleave = infos.interleave
self.swizzle = infos.swizzle
self.l2Promotion = infos.l2Promotion
self.oobFill = infos.oobFill
self.TMADescArgIdx = infos.TMADescArgIdx
# dict could be from cached metadata json
def _extract_info_from_dict(self, infos: dict):
self.tensorDataType = infos['tensorDataType']
self.tensorRank = infos['tensorRank']
self.globalAddressArgIdx = infos['globalAddressArgIdx']
self.globalStridesArgIdx = infos['globalStridesArgIdx']
self.globalDimsArgIdx = infos['globalDimsArgIdx']
self.boxDims = infos['boxDims']
self.elementStrides = infos['elementStrides']
self.interleave = infos['interleave']
self.swizzle = infos['swizzle']
self.l2Promotion = infos['l2Promotion']
self.oobFill = infos['oobFill']
self.TMADescArgIdx = infos['TMADescArgIdx']
def get_address_tma_mapping(self):
return {self.globalAddressArgIdx: self.TMADescArgIdx + len(self.ids_of_folded_args)}
def get_id_of_tensormap(self):
return self.TMADescArgIdx + len(self.ids_of_folded_args)
def getTMADescArgIdx(self):
return self.TMADescArgIdx
# dtype:cuda.CUtensorMapDataType | int
def bytes_from_type(self, dtype):
return {
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT8"]: 1,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT64"]: 8,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_BFLOAT16"]: 2,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32"]: 4,
driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ"]: 4
}[dtype]
def getTensorMapDataType(self):
return self.tensorDataType
def getInterleave(self):
return self.interleave
def getSwizzle(self):
return self.swizzle
def getL2Promotion(self):
return self.l2Promotion
def getOobFill(self):
return self.oobFill
def getTensorRank(self):
return self.tensorRank
def getBoxDims(self):
return self.boxDims
def getElementStrides(self):
return self.elementStrides
def getGlobalAddress(self, args):
idx = self.getOriginArgIdx(self.globalAddressArgIdx, args)
return args[idx]
# args, captured kernel args in runtime
def getGlobalDims(self, args):
shape = []
for e in self.globalDimsArgIdx:
t = 1
# < 0 means folded arg or constant (-1 - value)
# -1 means extended dim which is 1, -2 means folded arg with constant 1 (-1 - value)
if e == -1:
t = 1
elif e < 0 and e != -1:
t = -e - 1
else:
idx = self.getOriginArgIdx(e, args)
t = args[idx]
shape.append(t)
return shape
def getGlobalStrides(self, args):
t_globalDims = [int(e) for e in self.getGlobalDims(args)]
t_globalStridesArgIdx = self.globalStridesArgIdx.copy()
strides_in_elements = []
# todo: get all stride from backend even in extended mode
for i in range(self.tensorRank):
t = 1
if t_globalStridesArgIdx[i] == -1:
for ii in range(i):
t *= t_globalDims[ii]
# -2 means the sride in arguments is folded constant 1, we don't use 1 because it can not be distinguished from index 1
elif t_globalStridesArgIdx[i] < 0:
t = -1 - t_globalStridesArgIdx[i]
else:
new_idx = self.getOriginArgIdx(t_globalStridesArgIdx[i], args)
t = args[new_idx]
strides_in_elements.append(t)
strides_in_elements = strides_in_elements[1:]
strides_in_bytes = [e * self.bytes_from_type(self.tensorDataType) for e in strides_in_elements]
return strides_in_bytes
def getOriginArgIdx(self, idx, args):
if self.ids_of_folded_args:
ids_before_folding_arg = [i for i in range(len(args)) if i not in self.ids_of_folded_args]
return ids_before_folding_arg[idx]
else:
return idx
def tensormap(self, args):
return driver.utils.cuTensorMapEncodeTiled(
self.getTensorMapDataType(),
self.getTensorRank(),
self.getGlobalAddress(args),
self.getGlobalDims(args),
self.getGlobalStrides(args),
self.getBoxDims(),
self.getElementStrides(),
self.getInterleave(),
self.getSwizzle(),
self.getL2Promotion(),
self.getOobFill(),
)
# make hashable to use as partial key in cache
def __hash__(self):
return hash((self.ids_of_folded_args, self.globalAddressArgIdx, tuple(self.globalDimsArgIdx),
tuple(self.globalStridesArgIdx), self.tensorDataType, self.tensorRank, tuple(self.boxDims),
tuple(self.elementStrides), self.interleave, self.swizzle, self.l2Promotion, self.oobFill))
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return (self.ids_of_folded_args, self.globalAddressArgIdx, self.globalDimsArgIdx, self.globalStridesArgIdx,
self.tensorDataType, self.tensorRank, self.boxDims, self.elementStrides, self.interleave, self.swizzle,
self.l2Promotion,
self.oobFill) == (other.ids_of_folded_args, other.globalAddressArgIdx, other.globalDimsArgIdx,
other.globalStridesArgIdx, other.tensorDataType, other.tensorRank, other.boxDims,
other.elementStrides, other.interleave, other.swizzle, other.l2Promotion,
other.oobFill)
class TensorMapManager:
def __init__(self):
self.tensormaps_device = {}
def __getitem__(self, key: tuple):
if key in self.tensormaps_device:
return int(self.tensormaps_device[key])
else:
(e, args) = key
t_tensormap = e.tensormap(args)
TENSORMAP_SIZE_IN_BYTES = 128
t_tensormap_device = driver.utils.cuMemAlloc(TENSORMAP_SIZE_IN_BYTES)
driver.utils.cuMemcpyHtoD(t_tensormap_device, t_tensormap, TENSORMAP_SIZE_IN_BYTES)
self.tensormaps_device[key] = t_tensormap_device
return int(self.tensormaps_device[key])
def __del__(self):
for _, v in self.tensormaps_device.items():
driver.utils.cuMemFree(v)
|