File size: 12,703 Bytes
fab61cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2023 NVIDIA Corporation & Affiliates. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from __future__ import annotations

from ..runtime import driver


def generate_cu_signature(constants, signature, ids):
    # CUtensorMap*s are always the last arguments
    num_regular_signatures = max(signature.keys()) + 1 if len(signature) > 0 else 0
    if ids["ids_of_tensormaps"] is not None:
        for i, _ in enumerate(ids["ids_of_tensormaps"]):
            signature[num_regular_signatures + i] = '*CUtensorMap'
    return signature, num_regular_signatures


def dummy_tensormaps_info(n=2):
    ret = []
    for i in range(n):
        ret.append(InfoFromBackendForTensorMap(dummy=True))
    return ret


def parse_tma_info(infos, ids_of_folded_args):
    ret = []
    for info in infos:
        e = InfoFromBackendForTensorMap(infos=info)
        e.ids_of_folded_args = ids_of_folded_args
        ret.append(e)
    return ret


def get_tma_mapping(tensormaps_info):
    ret = {}
    if tensormaps_info is not None:
        for i, e in enumerate(tensormaps_info):
            ret.update(e.get_address_tma_mapping())
    else:
        ret = None
    return ret


def get_ids_of_tensormaps(tensormaps_info):
    ret = None
    # order is not relevant
    if tensormaps_info is not None:
        ret = [e.get_id_of_tensormap() for e in tensormaps_info]
    return ret


# decouple information for tensormap from backend
# please ignore the naming style, xx_yy is compiler.py style, xxYy is to comply with cuda tensormap style
# mixing style is for readability
class InfoFromBackendForTensorMap:
    N = 2
    n = 0
    ntma = 0

    def __init__(self, infos=None, dummy=False):
        self.dummy = dummy
        self.ids_of_folded_args = ()
        if not dummy and not isinstance(infos, dict):
            self._extract_info_from_backend(infos)
        elif not dummy and isinstance(infos, dict):
            self._extract_info_from_dict(infos)
        elif dummy:
            self._dummy()

    def _dummy(self):
        assert InfoFromBackendForTensorMap.n < InfoFromBackendForTensorMap.N
        if InfoFromBackendForTensorMap.n == 0:
            self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
            self.tensorRank = 4
            self.globalAddressArgIdx = 0
            self.globalStridesArgIdx = [7, 6, -1, -1]
            self.globalDimsArgIdx = [5, 3, -1, -1]
            self.boxDims = [16, 64, 1, 1]
            self.elementStrides = [1, 1, 1, 1]
            self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
            self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
            self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
            self.TMADescArgIdx = 11
            self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
            InfoFromBackendForTensorMap.n += 1
            return
        if InfoFromBackendForTensorMap.n == 1:
            self.tensorDataType = driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]
            self.tensorRank = 4
            self.globalAddressArgIdx = 1
            self.globalStridesArgIdx = [7, 6, -1, -1]
            self.globalDimsArgIdx = [5, 3, -1, -1]
            self.boxDims = [16, 64, 1, 1]
            self.elementStrides = [1, 1, 1, 1]
            self.interleave = driver.utils.CUtensorMapInterleave["CU_TENSOR_MAP_INTERLEAVE_NONE"]
            self.swizzle = driver.utils.CUtensorMapSwizzle["CU_TENSOR_MAP_SWIZZLE_32B"]
            self.l2Promotion = driver.utils.CUtensorMapL2promotion["CU_TENSOR_MAP_L2_PROMOTION_L2_128B"]
            self.TMADescArgIdx = 12
            self.oobFill = driver.utils.CUtensorMapFloatOOBfill["CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE"]
            InfoFromBackendForTensorMap.n += 1
            return

    def _extract_info_from_backend(self, infos):
        self.tensorDataType = infos.tensorDataType
        self.tensorRank = infos.tensorRank
        self.globalAddressArgIdx = infos.globalAddressArgIdx
        self.globalStridesArgIdx = infos.globalStridesArgIdx
        self.globalDimsArgIdx = infos.globalDimsArgIdx
        self.boxDims = infos.boxDims
        self.elementStrides = infos.elementStrides
        self.interleave = infos.interleave
        self.swizzle = infos.swizzle
        self.l2Promotion = infos.l2Promotion
        self.oobFill = infos.oobFill
        self.TMADescArgIdx = infos.TMADescArgIdx

    # dict could be from cached metadata json
    def _extract_info_from_dict(self, infos: dict):
        self.tensorDataType = infos['tensorDataType']
        self.tensorRank = infos['tensorRank']
        self.globalAddressArgIdx = infos['globalAddressArgIdx']
        self.globalStridesArgIdx = infos['globalStridesArgIdx']
        self.globalDimsArgIdx = infos['globalDimsArgIdx']
        self.boxDims = infos['boxDims']
        self.elementStrides = infos['elementStrides']
        self.interleave = infos['interleave']
        self.swizzle = infos['swizzle']
        self.l2Promotion = infos['l2Promotion']
        self.oobFill = infos['oobFill']
        self.TMADescArgIdx = infos['TMADescArgIdx']

    def get_address_tma_mapping(self):
        return {self.globalAddressArgIdx: self.TMADescArgIdx + len(self.ids_of_folded_args)}

    def get_id_of_tensormap(self):
        return self.TMADescArgIdx + len(self.ids_of_folded_args)

    def getTMADescArgIdx(self):
        return self.TMADescArgIdx

    # dtype:cuda.CUtensorMapDataType | int
    def bytes_from_type(self, dtype):
        return {
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT8"]: 1,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT16"]: 2,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT32"]: 4,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT32"]: 4,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_UINT64"]: 8,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_INT64"]: 8,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT16"]: 2,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32"]: 4,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT64"]: 8,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_BFLOAT16"]: 2,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ"]: 4,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32"]: 4,
            driver.utils.CUtensorMapDataType["CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ"]: 4
        }[dtype]

    def getTensorMapDataType(self):
        return self.tensorDataType

    def getInterleave(self):
        return self.interleave

    def getSwizzle(self):
        return self.swizzle

    def getL2Promotion(self):
        return self.l2Promotion

    def getOobFill(self):
        return self.oobFill

    def getTensorRank(self):
        return self.tensorRank

    def getBoxDims(self):
        return self.boxDims

    def getElementStrides(self):
        return self.elementStrides

    def getGlobalAddress(self, args):
        idx = self.getOriginArgIdx(self.globalAddressArgIdx, args)
        return args[idx]

    # args, captured kernel args in runtime
    def getGlobalDims(self, args):
        shape = []
        for e in self.globalDimsArgIdx:
            t = 1
            # < 0 means folded arg or constant (-1 - value)
            # -1 means extended dim which is 1, -2 means folded arg with constant 1 (-1 - value)
            if e == -1:
                t = 1
            elif e < 0 and e != -1:
                t = -e - 1
            else:
                idx = self.getOriginArgIdx(e, args)
                t = args[idx]
            shape.append(t)
        return shape

    def getGlobalStrides(self, args):
        t_globalDims = [int(e) for e in self.getGlobalDims(args)]
        t_globalStridesArgIdx = self.globalStridesArgIdx.copy()
        strides_in_elements = []
        # todo: get all stride from backend even in extended mode
        for i in range(self.tensorRank):
            t = 1
            if t_globalStridesArgIdx[i] == -1:
                for ii in range(i):
                    t *= t_globalDims[ii]
            # -2 means the sride in arguments is folded constant 1, we don't use 1 because it can not be distinguished from index 1
            elif t_globalStridesArgIdx[i] < 0:
                t = -1 - t_globalStridesArgIdx[i]
            else:
                new_idx = self.getOriginArgIdx(t_globalStridesArgIdx[i], args)
                t = args[new_idx]

            strides_in_elements.append(t)

        strides_in_elements = strides_in_elements[1:]
        strides_in_bytes = [e * self.bytes_from_type(self.tensorDataType) for e in strides_in_elements]
        return strides_in_bytes

    def getOriginArgIdx(self, idx, args):
        if self.ids_of_folded_args:
            ids_before_folding_arg = [i for i in range(len(args)) if i not in self.ids_of_folded_args]
            return ids_before_folding_arg[idx]
        else:
            return idx

    def tensormap(self, args):
        return driver.utils.cuTensorMapEncodeTiled(
            self.getTensorMapDataType(),
            self.getTensorRank(),
            self.getGlobalAddress(args),
            self.getGlobalDims(args),
            self.getGlobalStrides(args),
            self.getBoxDims(),
            self.getElementStrides(),
            self.getInterleave(),
            self.getSwizzle(),
            self.getL2Promotion(),
            self.getOobFill(),
        )

    # make hashable to use as partial key in cache
    def __hash__(self):
        return hash((self.ids_of_folded_args, self.globalAddressArgIdx, tuple(self.globalDimsArgIdx),
                     tuple(self.globalStridesArgIdx), self.tensorDataType, self.tensorRank, tuple(self.boxDims),
                     tuple(self.elementStrides), self.interleave, self.swizzle, self.l2Promotion, self.oobFill))

    def __eq__(self, other):
        if not isinstance(other, self.__class__):
            return False
        return (self.ids_of_folded_args, self.globalAddressArgIdx, self.globalDimsArgIdx, self.globalStridesArgIdx,
                self.tensorDataType, self.tensorRank, self.boxDims, self.elementStrides, self.interleave, self.swizzle,
                self.l2Promotion,
                self.oobFill) == (other.ids_of_folded_args, other.globalAddressArgIdx, other.globalDimsArgIdx,
                                  other.globalStridesArgIdx, other.tensorDataType, other.tensorRank, other.boxDims,
                                  other.elementStrides, other.interleave, other.swizzle, other.l2Promotion,
                                  other.oobFill)


class TensorMapManager:

    def __init__(self):
        self.tensormaps_device = {}

    def __getitem__(self, key: tuple):
        if key in self.tensormaps_device:
            return int(self.tensormaps_device[key])
        else:
            (e, args) = key
            t_tensormap = e.tensormap(args)
            TENSORMAP_SIZE_IN_BYTES = 128
            t_tensormap_device = driver.utils.cuMemAlloc(TENSORMAP_SIZE_IN_BYTES)
            driver.utils.cuMemcpyHtoD(t_tensormap_device, t_tensormap, TENSORMAP_SIZE_IN_BYTES)
            self.tensormaps_device[key] = t_tensormap_device
            return int(self.tensormaps_device[key])

    def __del__(self):
        for _, v in self.tensormaps_device.items():
            driver.utils.cuMemFree(v)