File size: 8,243 Bytes
9f700b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch

from ... import jit
from ... import language as tl
from ... import next_power_of_2


def num_warps(n):
    if n <= 128:
        return 1
    if n <= 256:
        return 2
    if n <= 512:
        return 4
    if n <= 4096:
        return 8
    return 16


@jit
def _blocksparse_softmax_fwd(Out, A, stride_xz, LUT,  #
                             R, extent, stride_zr, stride_hr,  # relative attention
                             scale, is_causal,  #
                             ROW_SIZE: tl.constexpr,  #
                             BLOCK_SIZE: tl.constexpr,  #
                             IS_DENSE: tl.constexpr  #
                             ):
    h = tl.program_id(0)
    m = tl.program_id(1)
    z = tl.program_id(2)
    # create index ranges
    hm = h * tl.num_programs(1) + m
    lane_n = tl.arange(0, ROW_SIZE) % BLOCK_SIZE
    block_n = tl.arange(0, ROW_SIZE) // BLOCK_SIZE
    # extract information from LUT
    header = LUT + (hm // BLOCK_SIZE) * 2
    size = tl.load(header + 0)
    offset = tl.load(header + 1)
    # pointer offset
    off_a = z * stride_xz
    off_a += (offset + block_n) * BLOCK_SIZE * BLOCK_SIZE  # block indx
    off_a += (m % BLOCK_SIZE) * BLOCK_SIZE  # row indx
    # do not need to read column indices in the dense case
    if IS_DENSE:
        ns = tl.arange(0, ROW_SIZE)
    else:
        off_lut = offset + 2 * tl.num_programs(0) * tl.num_programs(1) // BLOCK_SIZE
        start_n = tl.load(LUT + off_lut + block_n, mask=block_n < size, other=0)
        ns = start_n * BLOCK_SIZE + lane_n
    # load X
    mask = block_n < size
    a = tl.load(A + off_a + lane_n, mask=mask, other=-float("inf"))
    a = a.to(tl.float32)
    # compute
    out = a
    out *= scale
    # apply relative attention
    if R is not None:
        R += z * stride_zr
        R += h * stride_hr
        off_lo = (extent - m - 1) + ns
        mask_lo = (off_lo >= 0) & (off_lo < extent)
        rel_logits = tl.load(R + m * extent + off_lo, mask=mask_lo, other=0.0)
        out += rel_logits
    out = out.to(tl.float32)
    # apply causal mask
    out = tl.where((ns > m) & is_causal, -float("inf"), out)
    # computation
    out = tl.softmax(out)
    # write-back
    tl.store(Out + off_a + lane_n, out, mask=mask)


@jit
def _blocksparse_softmax_bwd(DA, stride_zdx,  #
                             DOut, stride_zdout,  #
                             Out, stride_zout,  #
                             scale,  #
                             LUT,  #
                             DR, extent, stride_zr, stride_hr, stride_er,  #
                             is_causal,  #
                             ROW_SIZE: tl.constexpr,  #
                             BLOCK_SIZE: tl.constexpr,  #
                             IS_DENSE: tl.constexpr):
    h = tl.program_id(0)
    m = tl.program_id(1)
    z = tl.program_id(2)
    # create index ranges
    hm = h * tl.num_programs(1) + m
    lane_n = tl.arange(0, ROW_SIZE) % BLOCK_SIZE
    block_n = tl.arange(0, ROW_SIZE) // BLOCK_SIZE
    # extract information from LUT
    header = LUT + (hm // BLOCK_SIZE) * 2
    size = tl.load(header + 0)
    offset = tl.load(header + 1)
    # row-col offset
    off_mn = (offset + block_n) * BLOCK_SIZE * BLOCK_SIZE
    off_mn += (m % BLOCK_SIZE) * BLOCK_SIZE
    mask = block_n < size
    # pointers
    As = Out + z * stride_zout + off_mn
    DOuts = DOut + z * stride_zdout + off_mn
    # do not need to read column indices in the dense case
    if IS_DENSE:
        ns = tl.arange(0, ROW_SIZE)
    else:
        off_lut = offset + 2 * tl.num_programs(0) * tl.num_programs(1) // BLOCK_SIZE
        start_n = tl.load(LUT + off_lut + block_n, mask=mask, other=0)
        ns = start_n * BLOCK_SIZE + lane_n
    # load data
    a = tl.load(As + lane_n, mask=mask, other=0.0)
    a = a.to(tl.float32)
    dout = tl.load(DOuts + lane_n, mask=mask, other=0.0)
    dout = dout.to(tl.float32)
    # compute
    a = tl.where((ns > m) & is_causal & (a == a), 0., a)
    da = a * (dout - tl.sum(a * dout, 0))
    # apply relative attention
    if DR is not None:
        DR += z * stride_zr
        DR += h * stride_hr
        off_lo = (extent - m - 1) + ns
        mask_lo = (off_lo >= 0) & (off_lo < extent) & mask
        tl.store(DR + m * extent + off_lo, da, mask=mask_lo)
    da = da * scale
    # convert da
    # write-back
    DAs = DA + z * stride_zdx + off_mn
    tl.store(DAs + lane_n, da, mask=mask)


class _softmax(torch.autograd.Function):

    @staticmethod
    def make_lut(layout, block, device):
        _empty = torch.tensor([], dtype=torch.int64, device=layout.device)
        sizes = _empty.clone()
        # sizes along rows
        for h in range(layout.shape[0]):
            sizes = torch.cat((sizes, layout[h, :, :].sum(-1)))
        total_sizes = sizes * block
        # offsets in block format
        offsets = torch.zeros_like(sizes)
        offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
        # block indices
        columns = layout.nonzero(as_tuple=False)[:, 2]
        header = torch.stack((sizes, offsets), dim=1).view(-1)
        lut = torch.cat((header, columns)).type(torch.int32).to(device)
        return lut, int(total_sizes.max())

    @staticmethod
    def forward(ctx, a, scale, rel_logits, is_causal, spdims, block, lut, maxlut, is_dense):
        if scale is not None and isinstance(scale, torch.Tensor):
            assert scale.device.type == "cpu"
            scale = scale.item()
        M = a.shape[0]
        grid = [spdims[0], spdims[1] * block, M]
        rel_shape = (1, 1, 1, 1) if rel_logits is None else rel_logits.shape
        rel_strides = (1, 1, 1, 1) if rel_logits is None else rel_logits.stride()
        # enqueue kernel
        out = torch.empty_like(a)
        _blocksparse_softmax_fwd[grid](
            out, a, a.stride(0), lut,  #
            rel_logits, rel_shape[-1], rel_strides[0], rel_strides[1],  # relative attn#
            scale,  #
            is_causal,  #
            BLOCK_SIZE=block,  #
            ROW_SIZE=next_power_of_2(maxlut),  #
            IS_DENSE=is_dense,  #
            num_warps=num_warps(maxlut)  #
        )
        # save to context
        # ctx.mark_dirty(x)
        ctx.save_for_backward(out, lut)
        ctx.spdims = spdims
        ctx.block = block
        ctx.maxlut = maxlut
        ctx.scale = scale
        ctx.rel_shape = rel_shape
        ctx.rel_strides = rel_strides
        ctx.rel_dtype = a.dtype
        ctx.is_dense = is_dense
        ctx.is_causal = is_causal
        return out

    @staticmethod
    def backward(ctx, dout):
        # retrieve from context
        out, lut = ctx.saved_tensors
        # relative logits gradients
        dr = None
        if ctx.needs_input_grad[3]:
            dr = torch.zeros(ctx.rel_shape, dtype=ctx.rel_dtype, device=out.device)
        # run kernel
        M = out.shape[0]
        grid = (ctx.spdims[0], ctx.spdims[1] * ctx.block, M)
        da = torch.empty_like(dout)
        _blocksparse_softmax_bwd[grid](
            da, da.stride(0),  #
            dout, dout.stride(0),  #
            out, out.stride(0),  #
            ctx.scale,  #
            lut,  #
            dr, ctx.rel_shape[-1], ctx.rel_strides[0], ctx.rel_strides[1], ctx.rel_strides[2],  #
            ctx.is_causal,  #
            BLOCK_SIZE=ctx.block,  #
            ROW_SIZE=next_power_of_2(ctx.maxlut),  #
            IS_DENSE=ctx.is_dense,  #
            num_warps=num_warps(ctx.maxlut)  #
        )
        return (da, None, None, dr, None, None, None, None, None, None, None, None, None, None, None, None, None, None)


class softmax:

    def __init__(self, layout, block, device, is_dense=False):
        self.spdims = layout.shape
        self.layout = layout
        self.block = block
        self.lut, self.maxlut = _softmax.make_lut(self.layout, self.block, device)
        self.is_dense = is_dense

    def __call__(self, a, *, scale=1.0, rel_logits=None, is_causal=False):
        if rel_logits is not None and rel_logits.dtype != a.dtype:
            raise ValueError(f"relative position embedding must be {a.dtype}")
        a = _softmax.apply(a, scale, rel_logits, is_causal, self.spdims, self.block, self.lut, self.maxlut,
                           self.is_dense)
        return a