File size: 17,945 Bytes
9f700b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
Fused Attention
===============
This is a Triton implementation of the Flash Attention algorithm
(see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf)

Sequence Parallel implementation inspired by HazyResearch
(see https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attn_triton.py)
"""

import torch

from .. import cdiv, jit
from .. import language as tl


@jit
def _fwd_kernel(Q, K, V, sm_scale,  #
                L,  #
                Out,  #
                stride_qz, stride_qh, stride_qm, stride_qk,  #
                stride_kz, stride_kh, stride_kn, stride_kk,  #
                stride_vz, stride_vh, stride_vn, stride_vk,  #
                stride_oz, stride_oh, stride_om, stride_on,  #
                Z, H, N_CTX,  #
                Z_H_N_CTX,  #
                BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,  #
                BLOCK_N: tl.constexpr,  #
                IS_CAUSAL: tl.constexpr  #
                ):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    qvk_offset = off_hz * stride_qh
    vk_offset = qvk_offset // stride_qm

    K_block_ptr = tl.make_block_ptr(
        base=K,
        shape=(BLOCK_DMODEL, Z_H_N_CTX),
        strides=(stride_kk, stride_kn),
        offsets=(0, vk_offset),
        block_shape=(BLOCK_DMODEL, BLOCK_N),
        order=(0, 1),
    )
    V_block_ptr = tl.make_block_ptr(
        base=V,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_vn, stride_vk),
        offsets=(vk_offset, 0),
        block_shape=(BLOCK_N, BLOCK_DMODEL),
        order=(1, 0),
    )
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # credits to: Adam P. Goucher (https://github.com/apgoucher):
    # scale sm_scale by 1/log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    qk_scale = sm_scale * 1.44269504
    # load q: it will stay in SRAM throughout

    offs_k = tl.arange(0, BLOCK_DMODEL)
    Q_ptrs = Q + qvk_offset + offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk
    q = tl.load(Q_ptrs)

    q = (q * qk_scale).to(K.dtype.element_ty)
    lo = 0
    hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
    for start_n in range(lo, hi, BLOCK_N):
        # -- load k, v --
        k = tl.load(K_block_ptr)
        v = tl.load(V_block_ptr)
        # -- compute qk ---
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        if IS_CAUSAL:
            qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
        qk += tl.dot(q, k, allow_tf32=True)
        # -- compute scaling constant ---
        m_i_new = tl.maximum(m_i, tl.max(qk, 1))
        alpha = tl.math.exp2(m_i - m_i_new)
        p = tl.math.exp2(qk - m_i_new[:, None])
        # -- scale and update acc --
        acc *= alpha[:, None]
        acc += tl.dot(p.to(V.dtype.element_ty), v, allow_tf32=True)
        # -- update m_i and l_i --
        l_i = l_i * alpha + tl.sum(p, 1)
        m_i = m_i_new
        # update pointers
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
    # write back l and m
    acc = acc / l_i[:, None]
    l_ptrs = L + off_hz * N_CTX + offs_m
    tl.store(l_ptrs, m_i + tl.math.log2(l_i))
    # write back O
    O_block_ptr = tl.make_block_ptr(
        base=Out,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_om, stride_on),
        offsets=(vk_offset + start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    # O_ptrs = Out + qvk_offset + offs_m[:, None] * stride_qm + offs_k[None, :] * stride_qk
    tl.store(O_block_ptr, acc.to(K.dtype.element_ty))


@jit
def _bwd_preprocess(
    Out,
    DO,
    Delta,
    BLOCK_M: tl.constexpr,
    D_HEAD: tl.constexpr,
):
    off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
    off_n = tl.arange(0, D_HEAD)
    # load
    o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
    do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
    # compute
    delta = tl.sum(o * do, axis=1)
    # write-back
    tl.store(Delta + off_m, delta)


@jit
def _bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale,  #
                              Out, DO,  #
                              DQ, DK, DV,  #
                              L,  #
                              D,  #
                              Q_block_ptr, K_block_ptr, V_block_ptr,  #
                              DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr,  #
                              stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk,  #
                              stride_kz, stride_kh, stride_kn, stride_kk,  #
                              stride_vz, stride_vh, stride_vn, stride_vk,  #
                              Z, H, N_CTX,  #
                              off_h, off_z, off_hz, start_n, num_block,  #
                              BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,  #
                              BLOCK_N: tl.constexpr,  #
                              SEQUENCE_PARALLEL: tl.constexpr,  #
                              CAUSAL: tl.constexpr,  #
                              MMA_V3: tl.constexpr  #
                              ):
    if CAUSAL:
        lo = start_n * BLOCK_M
    else:
        lo = 0

    Q_offset = (off_z * stride_qz + off_h * stride_qh) // stride_qm
    DQ_offset = off_z * stride_qz + off_h * stride_qh
    K_offset = (off_z * stride_kz + off_h * stride_kh) // stride_kn
    V_offset = (off_z * stride_vz + off_h * stride_vh) // stride_vn
    if SEQUENCE_PARALLEL:
        DQ_offset += stride_dqa.to(tl.int64) * start_n
    DQ_offset = DQ_offset // stride_qm

    Q_block_ptr = tl.advance(Q_block_ptr, (lo + Q_offset, 0))
    K_block_ptr = tl.advance(K_block_ptr, (start_n * BLOCK_M + K_offset, 0))
    V_block_ptr = tl.advance(V_block_ptr, (start_n * BLOCK_M + V_offset, 0))
    DO_block_ptr = tl.advance(DO_block_ptr, (lo + Q_offset, 0))
    DQ_block_ptr = tl.advance(DQ_block_ptr, (lo + DQ_offset, 0))
    DK_block_ptr = tl.advance(DK_block_ptr, (start_n * BLOCK_M + K_offset, 0))
    DV_block_ptr = tl.advance(DV_block_ptr, (start_n * BLOCK_M + V_offset, 0))

    # initialize row/col offsets
    offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_m = tl.arange(0, BLOCK_N)
    # pointer to row-wise quantities in value-like data
    D_ptrs = D + off_hz * N_CTX
    l_ptrs = L + off_hz * N_CTX
    # initialize dv amd dk
    dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # k and v stay in SRAM throughout
    k = tl.load(K_block_ptr)
    v = tl.load(V_block_ptr)
    # loop over rows
    for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
        offs_m_curr = start_m + offs_m
        # load q, k, v, do on-chip
        q = tl.load(Q_block_ptr)
        # recompute p = softmax(qk, dim=-1).T
        # NOTE: `do` is pre-divided by `l`; no normalization here
        if CAUSAL:
            qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), float(0.0), float("-inf"))
        else:
            qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, tl.trans(k))
        qk *= qk_scale
        l_i = tl.load(l_ptrs + offs_m_curr)
        p = tl.math.exp2(qk - l_i[:, None])
        # compute dv
        do = tl.load(DO_block_ptr)
        dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do, allow_tf32=True)
        # compute dp = dot(v, do)
        Di = tl.load(D_ptrs + offs_m_curr)
        # dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
        dp = tl.dot(do, tl.trans(v), allow_tf32=True)
        # compute ds = p * (dp - delta[:, None])
        ds = (p * (dp - Di[:, None]) * sm_scale).to(Q.dtype.element_ty)
        # compute dk = dot(ds.T, q)
        dk += tl.dot(tl.trans(ds), q, allow_tf32=True)
        # compute dq
        if not SEQUENCE_PARALLEL:
            dq = tl.load(DQ_block_ptr)
            dq += tl.dot(ds, k, allow_tf32=True)
            tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty))
        elif SEQUENCE_PARALLEL:
            if MMA_V3:
                dq = tl.dot(ds, k, allow_tf32=True)
            else:
                # not work with mma v3, becuase M % 64 != 0
                dq = tl.trans(tl.dot(tl.trans(k), tl.trans(ds), allow_tf32=True))
            tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty))

        # increment pointers
        DQ_block_ptr = tl.advance(DQ_block_ptr, (BLOCK_M, 0))
        Q_block_ptr = tl.advance(Q_block_ptr, (BLOCK_M, 0))
        DO_block_ptr = tl.advance(DO_block_ptr, (BLOCK_M, 0))
    # write-back
    tl.store(DV_block_ptr, dv.to(V.dtype.element_ty))
    tl.store(DK_block_ptr, dk.to(K.dtype.element_ty))


@jit
def _bwd_kernel(Q, K, V, sm_scale,  #
                Out, DO,  #
                DQ, DK, DV,  #
                L,  #
                D,  #
                stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk,  #
                stride_kz, stride_kh, stride_kn, stride_kk,  #
                stride_vz, stride_vh, stride_vn, stride_vk,  #
                Z, H, N_CTX,  #
                Z_H_N_CTX,  #
                SQ_Z_H_N_CTX,  #
                BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,  #
                BLOCK_N: tl.constexpr,  #
                SEQUENCE_PARALLEL: tl.constexpr,  #
                CAUSAL: tl.constexpr,  #
                MMA_V3: tl.constexpr  #
                ):
    qk_scale = sm_scale * 1.44269504
    off_hz = tl.program_id(0)
    off_z = off_hz // H
    off_h = off_hz % H

    Q_block_ptr = tl.make_block_ptr(
        base=Q,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    K_block_ptr = tl.make_block_ptr(
        base=K,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_kn, stride_kk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    V_block_ptr = tl.make_block_ptr(
        base=V,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_vn, stride_vk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    DO_block_ptr = tl.make_block_ptr(
        base=DO,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    if SEQUENCE_PARALLEL:
        DQ_block_ptr = tl.make_block_ptr(
            base=DQ,
            shape=(SQ_Z_H_N_CTX, BLOCK_DMODEL),
            strides=(stride_qm, stride_qk),
            offsets=(0, 0),
            block_shape=(BLOCK_M, BLOCK_DMODEL),
            order=(1, 0),
        )
    else:
        DQ_block_ptr = tl.make_block_ptr(
            base=DQ,
            shape=(Z_H_N_CTX, BLOCK_DMODEL),
            strides=(stride_qm, stride_qk),
            offsets=(0, 0),
            block_shape=(BLOCK_M, BLOCK_DMODEL),
            order=(1, 0),
        )

    DK_block_ptr = tl.make_block_ptr(
        base=DK,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_kn, stride_kk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    DV_block_ptr = tl.make_block_ptr(
        base=DV,
        shape=(Z_H_N_CTX, BLOCK_DMODEL),
        strides=(stride_vn, stride_vk),
        offsets=(0, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )

    num_block_n = tl.cdiv(N_CTX, BLOCK_N)
    if not SEQUENCE_PARALLEL:
        for start_n in range(0, num_block_n):
            _bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, Out, DO,  #
                                      DQ, DK, DV,  #
                                      L,  #
                                      D,  #
                                      Q_block_ptr, K_block_ptr, V_block_ptr,  #
                                      DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr,  #
                                      stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk,  #
                                      stride_kz, stride_kh, stride_kn, stride_kk,  #
                                      stride_vz, stride_vh, stride_vn, stride_vk,  #
                                      Z, H, N_CTX,  #
                                      off_h, off_z, off_hz, start_n, num_block_n,  #
                                      BLOCK_M=BLOCK_M, BLOCK_DMODEL=BLOCK_DMODEL,  #
                                      BLOCK_N=BLOCK_N,  #
                                      SEQUENCE_PARALLEL=SEQUENCE_PARALLEL,  #
                                      CAUSAL=CAUSAL,  #
                                      MMA_V3=MMA_V3  #
                                      )
    else:
        start_n = tl.program_id(1)
        _bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, Out, DO,  #
                                  DQ, DK, DV,  #
                                  L,  #
                                  D,  #
                                  Q_block_ptr, K_block_ptr, V_block_ptr,  #
                                  DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr,  #
                                  stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk,  #
                                  stride_kz, stride_kh, stride_kn, stride_kk,  #
                                  stride_vz, stride_vh, stride_vn, stride_vk,  #
                                  Z, H, N_CTX,  #
                                  off_h, off_z, off_hz, start_n, num_block_n,  #
                                  BLOCK_M=BLOCK_M, BLOCK_DMODEL=BLOCK_DMODEL,  #
                                  BLOCK_N=BLOCK_N,  #
                                  SEQUENCE_PARALLEL=SEQUENCE_PARALLEL,  #
                                  CAUSAL=CAUSAL,  #
                                  MMA_V3=MMA_V3  #
                                  )


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal, sm_scale, sequence_parallel=False):
        # only support for Ampere now
        capability = torch.cuda.get_device_capability()
        if capability[0] < 8:
            raise RuntimeError("Flash attention currently only supported for compute capability >= 80")
        BLOCK_M = 128
        BLOCK_N = 64
        # shape constraints
        Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
        assert Lq == Lk and Lk == Lv
        assert Lk in {16, 32, 64, 128}
        o = torch.empty_like(q)
        grid = (cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
        L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
        num_warps = 4 if Lk <= 64 else 8
        _fwd_kernel[grid](
            q, k, v, sm_scale,  #
            L,  #
            o,  #
            q.stride(0), q.stride(1), q.stride(2), q.stride(3),  #
            k.stride(0), k.stride(1), k.stride(2), k.stride(3),  #
            v.stride(0), v.stride(1), v.stride(2), v.stride(3),  #
            o.stride(0), o.stride(1), o.stride(2), o.stride(3),  #
            q.shape[0], q.shape[1], q.shape[2],  #
            q.shape[0] * q.shape[1] * q.shape[2],  #
            BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk,  #
            IS_CAUSAL=causal,  #
            num_warps=num_warps,  #
            num_stages=4  #
        )

        ctx.save_for_backward(q, k, v, o, L)
        ctx.grid = grid
        ctx.sm_scale = sm_scale
        ctx.BLOCK_DMODEL = Lk
        ctx.causal = causal
        ctx.sequence_parallel = sequence_parallel
        return o

    @staticmethod
    def backward(ctx, do):
        capability = torch.cuda.get_device_capability()
        MMA_V3 = capability[0] >= 9
        BLOCK = 128
        q, k, v, o, L = ctx.saved_tensors
        sequence_parallel = ctx.sequence_parallel
        seq_len_kv = k.shape[2]
        do = do.contiguous()
        if sequence_parallel:
            replicas = cdiv(seq_len_kv, BLOCK)
            new_dq_shape = (replicas, ) + q.shape
            dq = torch.zeros(new_dq_shape, device=q.device, dtype=q.dtype)
        else:
            dq = torch.zeros_like(q, dtype=q.dtype)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        delta = torch.empty_like(L)
        _bwd_preprocess[(cdiv(q.shape[2], BLOCK) * ctx.grid[1], )](
            o,
            do,
            delta,
            BLOCK_M=BLOCK,
            D_HEAD=ctx.BLOCK_DMODEL,
        )
        _bwd_kernel[(ctx.grid[1], cdiv(seq_len_kv, BLOCK) if sequence_parallel else 1)](
            q, k, v, ctx.sm_scale,  #
            o, do,  #
            dq, dk, dv,  #
            L,  #
            delta,  #
            o.numel(), q.stride(0), q.stride(1), q.stride(2), q.stride(3),  #
            k.stride(0), k.stride(1), k.stride(2), k.stride(3),  #
            v.stride(0), v.stride(1), v.stride(2), v.stride(3),  #
            q.shape[0], q.shape[1], q.shape[2],  #
            q.shape[0] * q.shape[1] * q.shape[2],  #
            cdiv(seq_len_kv, BLOCK) * q.shape[0] * q.shape[1] * q.shape[2],  #
            BLOCK_M=BLOCK, BLOCK_N=BLOCK,  #
            BLOCK_DMODEL=ctx.BLOCK_DMODEL,  #
            SEQUENCE_PARALLEL=sequence_parallel,  #
            CAUSAL=ctx.causal,  #
            MMA_V3=MMA_V3,  #
            num_warps=8,  #
            num_stages=1  #
        )

        if len(dq.shape) == 5:
            dq = dq.sum(dim=0)
        return dq, dk, dv, None, None, None


attention = _attention.apply