File size: 14,454 Bytes
c80136c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import argparse
import json
import logging
import os
import re
import sys
from functools import partial
from pathlib import Path
from typing import Union

import numpy as np

from lm_eval import evaluator, utils
from lm_eval.evaluator import request_caching_arg_to_dict
from lm_eval.logging_utils import WandbLogger
from lm_eval.tasks import TaskManager
from lm_eval.utils import make_table, simple_parse_args_string


DEFAULT_RESULTS_FILE = "results.json"


def _handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


def _int_or_none_list_arg_type(max_len: int, value: str, split_char: str = ","):
    def parse_value(item):
        item = item.strip().lower()
        if item == "none":
            return None
        try:
            return int(item)
        except ValueError:
            raise argparse.ArgumentTypeError(f"{item} is not an integer or None")

    items = [parse_value(v) for v in value.split(split_char)]
    num_items = len(items)

    if num_items == 1:
        # Makes downstream handling the same for single and multiple values
        items = items * max_len
    elif num_items != max_len:
        raise argparse.ArgumentTypeError(
            f"Argument requires {max_len} integers or None, separated by '{split_char}'"
        )

    return items


def check_argument_types(parser: argparse.ArgumentParser):
    """
    Check to make sure all CLI args are typed, raises error if not
    """
    for action in parser._actions:
        if action.dest != "help" and not action.const:
            if action.type is None:
                raise ValueError(
                    f"Argument '{action.dest}' doesn't have a type specified."
                )
            else:
                continue


def setup_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
    parser.add_argument(
        "--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
    )
    parser.add_argument(
        "--tasks",
        "-t",
        default=None,
        type=str,
        metavar="task1,task2",
        help="To get full list of tasks, use the command lm-eval --tasks list",
    )
    parser.add_argument(
        "--model_args",
        "-a",
        default="",
        type=str,
        help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
    )
    parser.add_argument(
        "--num_fewshot",
        "-f",
        type=int,
        default=None,
        metavar="N",
        help="Number of examples in few-shot context",
    )
    parser.add_argument(
        "--batch_size",
        "-b",
        type=str,
        default=1,
        metavar="auto|auto:N|N",
        help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
    )
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        metavar="N",
        help="Maximal batch size to try with --batch_size auto.",
    )
    parser.add_argument(
        "--device",
        type=str,
        default=None,
        help="Device to use (e.g. cuda, cuda:0, cpu).",
    )
    parser.add_argument(
        "--output_path",
        "-o",
        default=None,
        type=str,
        metavar="DIR|DIR/file.json",
        help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
    )
    parser.add_argument(
        "--limit",
        "-L",
        type=float,
        default=None,
        metavar="N|0<N<1",
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
    parser.add_argument(
        "--use_cache",
        "-c",
        type=str,
        default=None,
        metavar="DIR",
        help="A path to a sqlite db file for caching model responses. `None` if not caching.",
    )
    parser.add_argument(
        "--cache_requests",
        type=str,
        default=None,
        choices=["true", "refresh", "delete"],
        help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
    )
    parser.add_argument(
        "--check_integrity",
        action="store_true",
        help="Whether to run the relevant part of the test suite for the tasks.",
    )
    parser.add_argument(
        "--write_out",
        "-w",
        action="store_true",
        default=False,
        help="Prints the prompt for the first few documents.",
    )
    parser.add_argument(
        "--log_samples",
        "-s",
        action="store_true",
        default=False,
        help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
    )
    parser.add_argument(
        "--show_config",
        action="store_true",
        default=False,
        help="If True, shows the the full config of all tasks at the end of the evaluation.",
    )
    parser.add_argument(
        "--include_path",
        type=str,
        default=None,
        metavar="DIR",
        help="Additional path to include if there are external tasks to include.",
    )
    parser.add_argument(
        "--gen_kwargs",
        type=str,
        default=None,
        help=(
            "String arguments for model generation on greedy_until tasks,"
            " e.g. `temperature=0,top_k=0,top_p=0`."
        ),
    )
    parser.add_argument(
        "--verbosity",
        "-v",
        type=str.upper,
        default="INFO",
        metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
        help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
    )
    parser.add_argument(
        "--wandb_args",
        type=str,
        default="",
        help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval",
    )
    parser.add_argument(
        "--predict_only",
        "-x",
        action="store_true",
        default=False,
        help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
    )
    parser.add_argument(
        "--seed",
        type=partial(_int_or_none_list_arg_type, 3),
        default="0,1234,1234",  # for backward compatibility
        help=(
            "Set seed for python's random, numpy and torch.\n"
            "Accepts a comma-separated list of 3 values for python's random, numpy, and torch seeds, respectively, "
            "or a single integer to set the same seed for all three.\n"
            "The values are either an integer or 'None' to not set the seed. Default is `0,1234,1234` (for backward compatibility).\n"
            "E.g. `--seed 0,None,8` sets `random.seed(0)` and `torch.manual_seed(8)`. Here numpy's seed is not set since the second value is `None`.\n"
            "E.g, `--seed 42` sets all three seeds to 42."
        ),
    )
    parser.add_argument(
        "--trust_remote_code",
        action="store_true",
        help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
    )

    return parser


def parse_eval_args(parser: argparse.ArgumentParser) -> argparse.Namespace:
    check_argument_types(parser)
    return parser.parse_args()


def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
    if not args:
        # we allow for args to be passed externally, else we parse them ourselves
        parser = setup_parser()
        args = parse_eval_args(parser)

    if args.wandb_args:
        wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args))

    eval_logger = utils.eval_logger
    eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
    eval_logger.info(f"Verbosity set to {args.verbosity}")
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    if args.predict_only:
        args.log_samples = True
    if (args.log_samples or args.predict_only) and not args.output_path:
        raise ValueError(
            "Specify --output_path if providing --log_samples or --predict_only"
        )

    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")
    task_manager = TaskManager(args.verbosity, include_path=args.include_path)

    if args.limit:
        eval_logger.warning(
            " --limit SHOULD ONLY BE USED FOR TESTING."
            "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
        )

    if args.tasks is None:
        eval_logger.error("Need to specify task to evaluate.")
        sys.exit()
    elif args.tasks == "list":
        eval_logger.info(
            "Available Tasks:\n - {}".format("\n - ".join(task_manager.all_tasks))
        )
        sys.exit()
    else:
        if os.path.isdir(args.tasks):
            import glob

            task_names = []
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
                config = utils.load_yaml_config(yaml_file)
                task_names.append(config)
        else:
            task_list = args.tasks.split(",")
            task_names = task_manager.match_tasks(task_list)
            for task in [task for task in task_list if task not in task_names]:
                if os.path.isfile(task):
                    config = utils.load_yaml_config(task)
                    task_names.append(config)
            task_missing = [
                task for task in task_list if task not in task_names and "*" not in task
            ]  # we don't want errors if a wildcard ("*") task name was used

            if task_missing:
                missing = ", ".join(task_missing)
                eval_logger.error(
                    f"Tasks were not found: {missing}\n"
                    f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
                )
                raise ValueError(
                    f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
                )

    if args.output_path:
        path = Path(args.output_path)
        # check if file or 'dir/results.json' exists
        if path.is_file():
            raise FileExistsError(f"File already exists at {path}")
        output_path_file = path.joinpath(DEFAULT_RESULTS_FILE)
        if output_path_file.is_file():
            eval_logger.warning(
                f"File {output_path_file} already exists. Results will be overwritten."
            )
        # if path json then get parent dir
        elif path.suffix in (".json", ".jsonl"):
            output_path_file = path
            path.parent.mkdir(parents=True, exist_ok=True)
            path = path.parent
        else:
            path.mkdir(parents=True, exist_ok=True)

    # Respect user's value passed in via CLI, otherwise default to True and add to comma-separated model args
    if args.trust_remote_code:
        os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = str(args.trust_remote_code)
        args.model_args = (
            args.model_args
            + f",trust_remote_code={os.environ['HF_DATASETS_TRUST_REMOTE_CODE']}"
        )

    eval_logger.info(f"Selected Tasks: {task_names}")

    request_caching_args = request_caching_arg_to_dict(
        cache_requests=args.cache_requests
    )

    results = evaluator.simple_evaluate(
        model=args.model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
        max_batch_size=args.max_batch_size,
        device=args.device,
        use_cache=args.use_cache,
        limit=args.limit,
        check_integrity=args.check_integrity,
        write_out=args.write_out,
        log_samples=args.log_samples,
        gen_kwargs=args.gen_kwargs,
        task_manager=task_manager,
        verbosity=args.verbosity,
        predict_only=args.predict_only,
        random_seed=args.seed[0],
        numpy_random_seed=args.seed[1],
        torch_random_seed=args.seed[2],
        **request_caching_args,
    )

    if results is not None:
        if args.log_samples:
            samples = results.pop("samples")
        dumped = json.dumps(
            results, indent=2, default=_handle_non_serializable, ensure_ascii=False
        )
        if args.show_config:
            print(dumped)

        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

        # Add W&B logging
        if args.wandb_args:
            try:
                wandb_logger.post_init(results)
                wandb_logger.log_eval_result()
                if args.log_samples:
                    wandb_logger.log_eval_samples(samples)
            except Exception as e:
                eval_logger.info(f"Logging to Weights and Biases failed due to {e}")

        if args.output_path:
            output_path_file.open("w", encoding="utf-8").write(dumped)

            if args.log_samples:
                for task_name, config in results["configs"].items():
                    output_name = "{}_{}".format(
                        re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", args.model_args),
                        task_name,
                    )
                    filename = path.joinpath(f"{output_name}.jsonl")
                    samples_dumped = json.dumps(
                        samples[task_name],
                        indent=2,
                        default=_handle_non_serializable,
                        ensure_ascii=False,
                    )
                    filename.write_text(samples_dumped, encoding="utf-8")

        print(
            f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
            f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
        )
        print(make_table(results))
        if "groups" in results:
            print(make_table(results, "groups"))

        if args.wandb_args:
            # Tear down wandb run once all the logging is done.
            wandb_logger.run.finish()


if __name__ == "__main__":
    cli_evaluate()