File size: 76,626 Bytes
1fdfd93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 |
/*
* Copyright 1993-2022 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#pragma once
#ifndef CUBLASAPI
#ifdef __CUDACC__
#define CUBLASAPI __host__ __device__
#else
#define CUBLASAPI
#endif
#endif
#include <cublas_api.h>
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
/** Opaque structure holding CUBLASLT context
*/
typedef struct cublasLtContext* cublasLtHandle_t;
cublasStatus_t CUBLASWINAPI cublasLtCreate(cublasLtHandle_t* lightHandle);
cublasStatus_t CUBLASWINAPI cublasLtDestroy(cublasLtHandle_t lightHandle);
const char* CUBLASWINAPI cublasLtGetStatusName(cublasStatus_t status);
const char* CUBLASWINAPI cublasLtGetStatusString(cublasStatus_t status);
size_t CUBLASWINAPI cublasLtGetVersion(void);
size_t CUBLASWINAPI cublasLtGetCudartVersion(void);
cublasStatus_t CUBLASWINAPI cublasLtGetProperty(libraryPropertyType type, int* value);
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheGetCapacity(size_t* capacity);
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheSetCapacity(size_t capacity);
/** Restricts usage of CPU instructions (ISA) specified by the flags in the mask.
*
* Flags can be combined with bitwise OR(|) operator. Supported flags:
* - 0x1 -- x86-64 AVX512 ISA
*
* Default mask: 0 (any applicable ISA is allowed).
*
* The function returns the previous value of the mask.
* The function takes precedence over the environment variable CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK.
*/
unsigned CUBLASWINAPI cublasLtDisableCpuInstructionsSetMask(unsigned mask);
/** Semi-opaque descriptor for matrix memory layout
*/
typedef struct {
uint64_t data[8];
} cublasLtMatrixLayoutOpaque_t;
/** Opaque descriptor for matrix memory layout
*/
typedef cublasLtMatrixLayoutOpaque_t* cublasLtMatrixLayout_t;
/** Semi-opaque algorithm descriptor (to avoid complicated alloc/free schemes)
*
* This structure can be trivially serialized and later restored for use with the same version of cuBLAS library to save
* on selecting the right configuration again.
*/
typedef struct {
uint64_t data[8];
} cublasLtMatmulAlgo_t;
/** Semi-opaque descriptor for cublasLtMatmul() operation details
*/
typedef struct {
uint64_t data[23];
} cublasLtMatmulDescOpaque_t;
/** Opaque descriptor for cublasLtMatmul() operation details
*/
typedef cublasLtMatmulDescOpaque_t* cublasLtMatmulDesc_t;
/** Semi-opaque descriptor for cublasLtMatrixTransform() operation details
*/
typedef struct {
uint64_t data[8];
} cublasLtMatrixTransformDescOpaque_t;
/** Opaque descriptor for cublasLtMatrixTransform() operation details
*/
typedef cublasLtMatrixTransformDescOpaque_t* cublasLtMatrixTransformDesc_t;
/** Semi-opaque descriptor for cublasLtMatmulPreference() operation details
*/
typedef struct {
uint64_t data[8];
} cublasLtMatmulPreferenceOpaque_t;
/** Opaque descriptor for cublasLtMatmulAlgoGetHeuristic() configuration
*/
typedef cublasLtMatmulPreferenceOpaque_t* cublasLtMatmulPreference_t;
/** Tile size (in C/D matrix Rows x Cols)
*
* General order of tile IDs is sorted by size first and by first dimension second.
*/
typedef enum {
CUBLASLT_MATMUL_TILE_UNDEFINED = 0,
CUBLASLT_MATMUL_TILE_8x8 = 1,
CUBLASLT_MATMUL_TILE_8x16 = 2,
CUBLASLT_MATMUL_TILE_16x8 = 3,
CUBLASLT_MATMUL_TILE_8x32 = 4,
CUBLASLT_MATMUL_TILE_16x16 = 5,
CUBLASLT_MATMUL_TILE_32x8 = 6,
CUBLASLT_MATMUL_TILE_8x64 = 7,
CUBLASLT_MATMUL_TILE_16x32 = 8,
CUBLASLT_MATMUL_TILE_32x16 = 9,
CUBLASLT_MATMUL_TILE_64x8 = 10,
CUBLASLT_MATMUL_TILE_32x32 = 11,
CUBLASLT_MATMUL_TILE_32x64 = 12,
CUBLASLT_MATMUL_TILE_64x32 = 13,
CUBLASLT_MATMUL_TILE_32x128 = 14,
CUBLASLT_MATMUL_TILE_64x64 = 15,
CUBLASLT_MATMUL_TILE_128x32 = 16,
CUBLASLT_MATMUL_TILE_64x128 = 17,
CUBLASLT_MATMUL_TILE_128x64 = 18,
CUBLASLT_MATMUL_TILE_64x256 = 19,
CUBLASLT_MATMUL_TILE_128x128 = 20,
CUBLASLT_MATMUL_TILE_256x64 = 21,
CUBLASLT_MATMUL_TILE_64x512 = 22,
CUBLASLT_MATMUL_TILE_128x256 = 23,
CUBLASLT_MATMUL_TILE_256x128 = 24,
CUBLASLT_MATMUL_TILE_512x64 = 25,
CUBLASLT_MATMUL_TILE_64x96 = 26,
CUBLASLT_MATMUL_TILE_96x64 = 27,
CUBLASLT_MATMUL_TILE_96x128 = 28,
CUBLASLT_MATMUL_TILE_128x160 = 29,
CUBLASLT_MATMUL_TILE_160x128 = 30,
CUBLASLT_MATMUL_TILE_192x128 = 31,
CUBLASLT_MATMUL_TILE_128x192 = 32,
CUBLASLT_MATMUL_TILE_128x96 = 33,
CUBLASLT_MATMUL_TILE_32x256 = 34,
CUBLASLT_MATMUL_TILE_256x32 = 35,
CUBLASLT_MATMUL_TILE_END
} cublasLtMatmulTile_t;
/** Size and number of stages in which elements are read into shared memory
*
* General order of stages IDs is sorted by stage size first and by number of stages second.
*/
typedef enum {
CUBLASLT_MATMUL_STAGES_UNDEFINED = 0,
CUBLASLT_MATMUL_STAGES_16x1 = 1,
CUBLASLT_MATMUL_STAGES_16x2 = 2,
CUBLASLT_MATMUL_STAGES_16x3 = 3,
CUBLASLT_MATMUL_STAGES_16x4 = 4,
CUBLASLT_MATMUL_STAGES_16x5 = 5,
CUBLASLT_MATMUL_STAGES_16x6 = 6,
CUBLASLT_MATMUL_STAGES_32x1 = 7,
CUBLASLT_MATMUL_STAGES_32x2 = 8,
CUBLASLT_MATMUL_STAGES_32x3 = 9,
CUBLASLT_MATMUL_STAGES_32x4 = 10,
CUBLASLT_MATMUL_STAGES_32x5 = 11,
CUBLASLT_MATMUL_STAGES_32x6 = 12,
CUBLASLT_MATMUL_STAGES_64x1 = 13,
CUBLASLT_MATMUL_STAGES_64x2 = 14,
CUBLASLT_MATMUL_STAGES_64x3 = 15,
CUBLASLT_MATMUL_STAGES_64x4 = 16,
CUBLASLT_MATMUL_STAGES_64x5 = 17,
CUBLASLT_MATMUL_STAGES_64x6 = 18,
CUBLASLT_MATMUL_STAGES_128x1 = 19,
CUBLASLT_MATMUL_STAGES_128x2 = 20,
CUBLASLT_MATMUL_STAGES_128x3 = 21,
CUBLASLT_MATMUL_STAGES_128x4 = 22,
CUBLASLT_MATMUL_STAGES_128x5 = 23,
CUBLASLT_MATMUL_STAGES_128x6 = 24,
CUBLASLT_MATMUL_STAGES_32x10 = 25,
CUBLASLT_MATMUL_STAGES_8x4 = 26,
CUBLASLT_MATMUL_STAGES_16x10 = 27,
CUBLASLT_MATMUL_STAGES_8x5 = 28,
CUBLASLT_MATMUL_STAGES_8x3 = 31,
CUBLASLT_MATMUL_STAGES_8xAUTO = 32,
CUBLASLT_MATMUL_STAGES_16xAUTO = 33,
CUBLASLT_MATMUL_STAGES_32xAUTO = 34,
CUBLASLT_MATMUL_STAGES_64xAUTO = 35,
CUBLASLT_MATMUL_STAGES_128xAUTO = 36,
CUBLASLT_MATMUL_STAGES_END
} cublasLtMatmulStages_t;
/** Thread Block Cluster size
*
* Typically dimensioned similar to cublasLtMatmulTile_t, with the third coordinate unused at this time.
*/
typedef enum {
/** Let library pick cluster shape automatically */
CUBLASLT_CLUSTER_SHAPE_AUTO = 0,
CUBLASLT_CLUSTER_SHAPE_1x1x1 = 2,
CUBLASLT_CLUSTER_SHAPE_2x1x1 = 3,
CUBLASLT_CLUSTER_SHAPE_4x1x1 = 4,
CUBLASLT_CLUSTER_SHAPE_1x2x1 = 5,
CUBLASLT_CLUSTER_SHAPE_2x2x1 = 6,
CUBLASLT_CLUSTER_SHAPE_4x2x1 = 7,
CUBLASLT_CLUSTER_SHAPE_1x4x1 = 8,
CUBLASLT_CLUSTER_SHAPE_2x4x1 = 9,
CUBLASLT_CLUSTER_SHAPE_4x4x1 = 10,
CUBLASLT_CLUSTER_SHAPE_8x1x1 = 11,
CUBLASLT_CLUSTER_SHAPE_1x8x1 = 12,
CUBLASLT_CLUSTER_SHAPE_8x2x1 = 13,
CUBLASLT_CLUSTER_SHAPE_2x8x1 = 14,
CUBLASLT_CLUSTER_SHAPE_16x1x1 = 15,
CUBLASLT_CLUSTER_SHAPE_1x16x1 = 16,
CUBLASLT_CLUSTER_SHAPE_3x1x1 = 17,
CUBLASLT_CLUSTER_SHAPE_5x1x1 = 18,
CUBLASLT_CLUSTER_SHAPE_6x1x1 = 19,
CUBLASLT_CLUSTER_SHAPE_7x1x1 = 20,
CUBLASLT_CLUSTER_SHAPE_9x1x1 = 21,
CUBLASLT_CLUSTER_SHAPE_10x1x1 = 22,
CUBLASLT_CLUSTER_SHAPE_11x1x1 = 23,
CUBLASLT_CLUSTER_SHAPE_12x1x1 = 24,
CUBLASLT_CLUSTER_SHAPE_13x1x1 = 25,
CUBLASLT_CLUSTER_SHAPE_14x1x1 = 26,
CUBLASLT_CLUSTER_SHAPE_15x1x1 = 27,
CUBLASLT_CLUSTER_SHAPE_3x2x1 = 28,
CUBLASLT_CLUSTER_SHAPE_5x2x1 = 29,
CUBLASLT_CLUSTER_SHAPE_6x2x1 = 30,
CUBLASLT_CLUSTER_SHAPE_7x2x1 = 31,
CUBLASLT_CLUSTER_SHAPE_1x3x1 = 32,
CUBLASLT_CLUSTER_SHAPE_2x3x1 = 33,
CUBLASLT_CLUSTER_SHAPE_3x3x1 = 34,
CUBLASLT_CLUSTER_SHAPE_4x3x1 = 35,
CUBLASLT_CLUSTER_SHAPE_5x3x1 = 36,
CUBLASLT_CLUSTER_SHAPE_3x4x1 = 37,
CUBLASLT_CLUSTER_SHAPE_1x5x1 = 38,
CUBLASLT_CLUSTER_SHAPE_2x5x1 = 39,
CUBLASLT_CLUSTER_SHAPE_3x5x1 = 40,
CUBLASLT_CLUSTER_SHAPE_1x6x1 = 41,
CUBLASLT_CLUSTER_SHAPE_2x6x1 = 42,
CUBLASLT_CLUSTER_SHAPE_1x7x1 = 43,
CUBLASLT_CLUSTER_SHAPE_2x7x1 = 44,
CUBLASLT_CLUSTER_SHAPE_1x9x1 = 45,
CUBLASLT_CLUSTER_SHAPE_1x10x1 = 46,
CUBLASLT_CLUSTER_SHAPE_1x11x1 = 47,
CUBLASLT_CLUSTER_SHAPE_1x12x1 = 48,
CUBLASLT_CLUSTER_SHAPE_1x13x1 = 49,
CUBLASLT_CLUSTER_SHAPE_1x14x1 = 50,
CUBLASLT_CLUSTER_SHAPE_1x15x1 = 51,
CUBLASLT_CLUSTER_SHAPE_END
} cublasLtClusterShape_t;
/** Inner size of the kernel
*
* Represents various aspects of internal kernel design, that don't impact CUDA grid size but may have other more subtle
* effects.
*
*/
typedef enum {
CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED = 0,
CUBLASLT_MATMUL_INNER_SHAPE_MMA884 = 1,
CUBLASLT_MATMUL_INNER_SHAPE_MMA1684 = 2,
CUBLASLT_MATMUL_INNER_SHAPE_MMA1688 = 3,
CUBLASLT_MATMUL_INNER_SHAPE_MMA16816 = 4,
CUBLASLT_MATMUL_INNER_SHAPE_END
} cublasLtMatmulInnerShape_t;
/** Pointer mode to use for alpha/beta */
typedef enum {
/** matches CUBLAS_POINTER_MODE_HOST, pointer targets a single value host memory */
CUBLASLT_POINTER_MODE_HOST = CUBLAS_POINTER_MODE_HOST,
/** matches CUBLAS_POINTER_MODE_DEVICE, pointer targets a single value device memory */
CUBLASLT_POINTER_MODE_DEVICE = CUBLAS_POINTER_MODE_DEVICE,
/** pointer targets an array in device memory */
CUBLASLT_POINTER_MODE_DEVICE_VECTOR = 2,
/** alpha pointer targets an array in device memory, beta is zero. Note:
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE is not supported, must be 0. */
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO = 3,
/** alpha pointer targets an array in device memory, beta is a single value in host memory. */
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST = 4,
} cublasLtPointerMode_t;
/** Mask to define pointer mode capability */
typedef enum {
/** see CUBLASLT_POINTER_MODE_HOST */
CUBLASLT_POINTER_MODE_MASK_HOST = 1,
/** see CUBLASLT_POINTER_MODE_DEVICE */
CUBLASLT_POINTER_MODE_MASK_DEVICE = 2,
/** see CUBLASLT_POINTER_MODE_DEVICE_VECTOR */
CUBLASLT_POINTER_MODE_MASK_DEVICE_VECTOR = 4,
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO */
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_ZERO = 8,
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST */
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_HOST = 16,
} cublasLtPointerModeMask_t;
/** Implementation details that may affect numerical behavior of algorithms. */
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_FMA (0x01ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_HMMA (0x02ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_IMMA (0x04ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_DMMA (0x08ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_TENSOR_OP_MASK (0xfeull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_TYPE_MASK (0xffull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_16F (0x01ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32F (0x02ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_64F (0x04ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32I (0x08ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_TYPE_MASK (0xffull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16F (0x01ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16BF (0x02ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_TF32 (0x04ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_32F (0x08ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_64F (0x10ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8I (0x20ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8F_E4M3 (0x40ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8F_E5M2 (0x80ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_INPUT_TYPE_MASK (0xffull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_GAUSSIAN (0x01ull << 32)
typedef uint64_t cublasLtNumericalImplFlags_t;
/** Execute matrix multiplication (D = alpha * op(A) * op(B) + beta * C).
*
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g.
* when workspaceSizeInBytes is less than workspace required by configured
* algo
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured
* operation
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmul(cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t computeDesc,
const void* alpha, /* host or device pointer */
const void* A,
cublasLtMatrixLayout_t Adesc,
const void* B,
cublasLtMatrixLayout_t Bdesc,
const void* beta, /* host or device pointer */
const void* C,
cublasLtMatrixLayout_t Cdesc,
void* D,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t* algo,
void* workspace,
size_t workspaceSizeInBytes,
cudaStream_t stream);
/** Matrix layout conversion helper (C = alpha * op(A) + beta * op(B))
*
* Can be used to change memory order of data or to scale and shift the values.
*
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g.
* when A is not NULL, but Adesc is NULL
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured
* operation
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransform(cublasLtHandle_t lightHandle,
cublasLtMatrixTransformDesc_t transformDesc,
const void* alpha, /* host or device pointer */
const void* A,
cublasLtMatrixLayout_t Adesc,
const void* beta, /* host or device pointer */
const void* B,
cublasLtMatrixLayout_t Bdesc,
void* C,
cublasLtMatrixLayout_t Cdesc,
cudaStream_t stream);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatrixLayout_t */
/* ---------------------------------------------------------------------------------------*/
/** Enum for data ordering */
typedef enum {
/** Column-major
*
* Leading dimension is the stride (in elements) to the beginning of next column in memory.
*/
CUBLASLT_ORDER_COL = 0,
/** Row major
*
* Leading dimension is the stride (in elements) to the beginning of next row in memory.
*/
CUBLASLT_ORDER_ROW = 1,
/** Column-major ordered tiles of 32 columns.
*
* Leading dimension is the stride (in elements) to the beginning of next group of 32-columns. E.g. if matrix has 33
* columns and 2 rows, ld must be at least (32) * 2 = 64.
*/
CUBLASLT_ORDER_COL32 = 2,
/** Column-major ordered tiles of composite tiles with total 32 columns and 8 rows, tile composed of interleaved
* inner tiles of 4 columns within 4 even or odd rows in an alternating pattern.
*
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 8 row tile for the next
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32 * 8) * 1 = 256.
*/
CUBLASLT_ORDER_COL4_4R2_8C = 3,
/** Column-major ordered tiles of composite tiles with total 32 columns ands 32 rows.
* Element offset within the tile is calculated as (((row%8)/2*4+row/8)*2+row%2)*32+col.
*
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 32 row tile for the next
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32*32)*1 = 1024.
*/
CUBLASLT_ORDER_COL32_2R_4R4 = 4,
} cublasLtOrder_t;
/** Attributes of memory layout */
typedef enum {
/** Data type, see cudaDataType.
*
* uint32_t
*/
CUBLASLT_MATRIX_LAYOUT_TYPE = 0,
/** Memory order of the data, see cublasLtOrder_t.
*
* int32_t, default: CUBLASLT_ORDER_COL
*/
CUBLASLT_MATRIX_LAYOUT_ORDER = 1,
/** Number of rows.
*
* Usually only values that can be expressed as int32_t are supported.
*
* uint64_t
*/
CUBLASLT_MATRIX_LAYOUT_ROWS = 2,
/** Number of columns.
*
* Usually only values that can be expressed as int32_t are supported.
*
* uint64_t
*/
CUBLASLT_MATRIX_LAYOUT_COLS = 3,
/** Matrix leading dimension.
*
* For CUBLASLT_ORDER_COL this is stride (in elements) of matrix column, for more details and documentation for
* other memory orders see documentation for cublasLtOrder_t values.
*
* Currently only non-negative values are supported, must be large enough so that matrix memory locations are not
* overlapping (e.g. greater or equal to CUBLASLT_MATRIX_LAYOUT_ROWS in case of CUBLASLT_ORDER_COL).
*
* int64_t;
*/
CUBLASLT_MATRIX_LAYOUT_LD = 4,
/** Number of matmul operations to perform in the batch.
*
* See also CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT
*
* int32_t, default: 1
*/
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT = 5,
/** Stride (in elements) to the next matrix for strided batch operation.
*
* When matrix type is planar-complex (CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET != 0), batch stride
* is interpreted by cublasLtMatmul() in number of real valued sub-elements. E.g. for data of type CUDA_C_16F,
* offset of 1024B is encoded as a stride of value 512 (since each element of the real and imaginary matrices
* is a 2B (16bit) floating point type).
*
* NOTE: A bug in cublasLtMatrixTransform() causes it to interpret the batch stride for a planar-complex matrix
* as if it was specified in number of complex elements. Therefore an offset of 1024B must be encoded as stride
* value 256 when calling cublasLtMatrixTransform() (each complex element is 4B with real and imaginary values 2B
* each). This behavior is expected to be corrected in the next major cuBLAS version.
*
* int64_t, default: 0
*/
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET = 6,
/** Stride (in bytes) to the imaginary plane for planar complex layout.
*
* int64_t, default: 0 - 0 means that layout is regular (real and imaginary parts of complex numbers are interleaved
* in memory in each element)
*/
CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET = 7,
} cublasLtMatrixLayoutAttribute_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutInit_internal( //
cublasLtMatrixLayout_t matLayout,
size_t size,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);
/** Initialize matrix layout descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatrixLayoutInit(
cublasLtMatrixLayout_t matLayout, cudaDataType type, uint64_t rows, uint64_t cols, int64_t ld) {
return cublasLtMatrixLayoutInit_internal(matLayout, sizeof(*matLayout), type, rows, cols, ld);
}
/** Create new matrix layout descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutCreate( //
cublasLtMatrixLayout_t* matLayout,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);
/** Destroy matrix layout descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutDestroy(cublasLtMatrixLayout_t matLayout);
/** Set matrix layout descriptor attribute.
*
* \param[in] matLayout The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutSetAttribute( //
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matrix layout descriptor attribute.
*
* \param[in] matLayout The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutGetAttribute( //
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatmulDesc_t */
/* ---------------------------------------------------------------------------------------*/
/** Matmul descriptor attributes to define details of the operation. */
typedef enum {
/** Compute type, see cudaDataType. Defines data type used for multiply and accumulate operations and the
* accumulator during matrix multiplication.
*
* int32_t
*/
CUBLASLT_MATMUL_DESC_COMPUTE_TYPE = 0,
/** Scale type, see cudaDataType. Defines data type of alpha and beta. Accumulator and value from matrix C are
* typically converted to scale type before final scaling. Value is then converted from scale type to type of matrix
* D before being stored in memory.
*
* int32_t, default: same as CUBLASLT_MATMUL_DESC_COMPUTE_TYPE
*/
CUBLASLT_MATMUL_DESC_SCALE_TYPE = 1,
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t. When CUBLASLT_POINTER_MODE_DEVICE_VECTOR is in use,
* alpha/beta vector lenghts must match number of output matrix rows.
*
* int32_t, default: CUBLASLT_POINTER_MODE_HOST
*/
CUBLASLT_MATMUL_DESC_POINTER_MODE = 2,
/** Transform of matrix A, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSA = 3,
/** Transform of matrix B, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSB = 4,
/** Transform of matrix C, see cublasOperation_t.
*
* Currently only CUBLAS_OP_N is supported.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSC = 5,
/** Matrix fill mode, see cublasFillMode_t.
*
* int32_t, default: CUBLAS_FILL_MODE_FULL
*/
CUBLASLT_MATMUL_DESC_FILL_MODE = 6,
/** Epilogue function, see cublasLtEpilogue_t.
*
* uint32_t, default: CUBLASLT_EPILOGUE_DEFAULT
*/
CUBLASLT_MATMUL_DESC_EPILOGUE = 7,
/** Bias or bias gradient vector pointer in the device memory.
*
* Bias case. See CUBLASLT_EPILOGUE_BIAS.
* For bias data type see CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE.
*
* Bias vector length must match matrix D rows count.
*
* Bias gradient case. See CUBLASLT_EPILOGUE_DRELU_BGRAD and CUBLASLT_EPILOGUE_DGELU_BGRAD.
* Bias gradient vector elements are the same type as the output elements
* (Ctype) with the exception of IMMA kernels (see above).
*
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic()
* depend on its value to determine expected pointer alignment.
*
* Bias case: const void *, default: NULL
* Bias gradient case: void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_BIAS_POINTER = 8,
/** Batch stride for bias or bias gradient vector.
*
* Used together with CUBLASLT_MATMUL_DESC_BIAS_POINTER when matrix D's CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE = 10,
/** Pointer for epilogue auxiliary buffer.
*
* - Output vector for ReLu bit-mask in forward pass when CUBLASLT_EPILOGUE_RELU_AUX
* or CUBLASLT_EPILOGUE_RELU_AUX_BIAS epilogue is used.
* - Input vector for ReLu bit-mask in backward pass when
* CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is used.
*
* - Output of GELU input matrix in forward pass when
* CUBLASLT_EPILOGUE_GELU_AUX_BIAS epilogue is used.
* - Input of GELU input matrix for backward pass when
* CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue is used.
*
* For aux data type see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE.
*
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic()
* depend on its value to determine expected pointer alignment.
*
* Requires setting CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD attribute.
*
* Forward pass: void *, default: NULL
* Backward pass: const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER = 11,
/** Leading dimension for epilogue auxiliary buffer.
*
* - ReLu bit-mask matrix leading dimension in elements (i.e. bits)
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is
* used. Must be divisible by 128 and be no less than the number of rows in the output matrix.
*
* - GELU input matrix leading dimension in elements
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used.
* Must be divisible by 8 and be no less than the number of rows in the output matrix.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD = 12,
/** Batch stride for epilogue auxiliary buffer.
*
* - ReLu bit-mask matrix batch stride in elements (i.e. bits)
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is
* used. Must be divisible by 128.
*
* - GELU input matrix batch stride in elements
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used.
* Must be divisible by 8.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_BATCH_STRIDE = 13,
/** Batch stride for alpha vector.
*
* Used together with CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST when matrix D's
* CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1. If CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO is set then
* CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE must be set to 0 as this mode doesnt supported batched alpha vector.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE = 14,
/** Number of SMs to target for parallel execution. Optimizes heuristics for execution on a different number of SMs
* when user expects a concurrent stream to be using some of the device resources.
*
* int32_t, default: 0 - use the number reported by the device.
*/
CUBLASLT_MATMUL_DESC_SM_COUNT_TARGET = 15,
/** Device pointer to the scale factor value that converts data in matrix A to the compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER = 17,
/** Device pointer to the scale factor value to convert data in matrix B to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_B_SCALE_POINTER = 18,
/** Device pointer to the scale factor value to convert data in matrix C to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_C_SCALE_POINTER = 19,
/** Device pointer to the scale factor value to convert data in matrix D to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_D_SCALE_POINTER = 20,
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the
* output matrix.
*
* The computed value has the same type as the compute type.
*
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_AMAX_D_POINTER = 21,
/** Type of the data to be stored to the memory pointed to by CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* If unset, the data type defaults to the type of elements of the output matrix with some exceptions, see details
* below.
*
* ReLu uses a bit-mask.
*
* GELU input matrix elements type is the same as the type of elements of
* the output matrix with some exceptions, see details below.
*
* For fp8 kernels with output type CUDA_R_8F_E4M3 the aux data type can be CUDA_R_8F_E4M3 or CUDA_R_16F with some
* restrictions. See https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmulDescAttributes_t for more details.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* int32_t based on cudaDataType, default: -1
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE = 22,
/** Device pointer to the scaling factor value to convert results from compute type data range to storage
* data range in the auxiliary matrix that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1. If set for an unsupported matrix data,
* scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTER = 23,
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the
* buffer that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* The computed value has the same type as the compute type.
*
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER = 24,
/** Flag for managing fp8 fast accumulation mode.
* When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results
* will not periodically be promoted to a higher precision.
*
* int8_t, default: 0 - fast accumulation mode is disabled.
*/
CUBLASLT_MATMUL_DESC_FAST_ACCUM = 25,
/** Type of bias or bias gradient vector in the device memory.
*
* Bias case: see CUBLASLT_EPILOGUE_BIAS.
*
* Bias vector elements are the same type as the elements of output matrix (Dtype) with the following exceptions:
* - IMMA kernels with computeType=CUDA_R_32I and Ctype=CUDA_R_8I where the bias vector elements
* are the same type as alpha, beta (CUBLASLT_MATMUL_DESC_SCALE_TYPE=CUDA_R_32F)
* - fp8 kernels with an output type of CUDA_R_32F, CUDA_R_8F_E4M3 or CUDA_R_8F_E5M2, See
* https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmul for details.
*
* int32_t based on cudaDataType, default: -1
*/
CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE = 26,
} cublasLtMatmulDescAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescInit_internal( //
cublasLtMatmulDesc_t matmulDesc,
size_t size,
cublasComputeType_t computeType,
cudaDataType_t scaleType);
/** Initialize matmul operation descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was initialized successfully
*/
static inline cublasStatus_t cublasLtMatmulDescInit( //
cublasLtMatmulDesc_t matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType) {
return cublasLtMatmulDescInit_internal(matmulDesc, sizeof(*matmulDesc), computeType, scaleType);
}
/** Create new matmul operation descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescCreate(cublasLtMatmulDesc_t* matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);
/** Destroy matmul operation descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescDestroy(cublasLtMatmulDesc_t matmulDesc);
/** Set matmul operation descriptor attribute.
*
* \param[in] matmulDesc The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescSetAttribute( //
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matmul operation descriptor attribute.
*
* \param[in] matmulDesc The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescGetAttribute( //
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatrixTransformDesc_t */
/* ---------------------------------------------------------------------------------------*/
/** Matrix transform descriptor attributes to define details of the operation.
*/
typedef enum {
/** Scale type, see cudaDataType. Inputs are converted to scale type for scaling and summation and results are then
* converted to output type to store in memory.
*
* int32_t
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_SCALE_TYPE,
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t.
*
* int32_t, default: CUBLASLT_POINTER_MODE_HOST
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODE,
/** Transform of matrix A, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA,
/** Transform of matrix B, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSB,
} cublasLtMatrixTransformDescAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescInit_internal(cublasLtMatrixTransformDesc_t transformDesc,
size_t size,
cudaDataType scaleType);
/** Initialize matrix transform operation descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatrixTransformDescInit(cublasLtMatrixTransformDesc_t transformDesc,
cudaDataType scaleType) {
return cublasLtMatrixTransformDescInit_internal(transformDesc, sizeof(*transformDesc), scaleType);
}
/** Create new matrix transform operation descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescCreate(cublasLtMatrixTransformDesc_t* transformDesc,
cudaDataType scaleType);
/** Destroy matrix transform operation descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescDestroy(cublasLtMatrixTransformDesc_t transformDesc);
/** Set matrix transform operation descriptor attribute.
*
* \param[in] transformDesc The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescSetAttribute( //
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matrix transform operation descriptor attribute.
*
* \param[in] transformDesc The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number
* of bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescGetAttribute( //
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Reduction scheme for portions of the dot-product calculated in parallel (a. k. a. "split - K").
*/
typedef enum {
/** No reduction scheme, dot-product shall be performed in one sequence.
*/
CUBLASLT_REDUCTION_SCHEME_NONE = 0,
/** Reduction is performed "in place" - using the output buffer (and output data type) and counters (in workspace) to
* guarantee the sequentiality.
*/
CUBLASLT_REDUCTION_SCHEME_INPLACE = 1,
/** Intermediate results are stored in compute type in the workspace and reduced in a separate step.
*/
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE = 2,
/** Intermediate results are stored in output type in the workspace and reduced in a separate step.
*/
CUBLASLT_REDUCTION_SCHEME_OUTPUT_TYPE = 4,
CUBLASLT_REDUCTION_SCHEME_MASK = 0x7,
} cublasLtReductionScheme_t;
/** Postprocessing options for the epilogue
*/
typedef enum {
/** No special postprocessing, just scale and quantize results if necessary.
*/
CUBLASLT_EPILOGUE_DEFAULT = 1,
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)).
*/
CUBLASLT_EPILOGUE_RELU = 2,
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)).
*
* This epilogue mode produces an extra output, a ReLu bit-mask matrix,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_RELU_AUX = (CUBLASLT_EPILOGUE_RELU | 128),
/** Bias, apply (broadcasted) Bias from bias vector. Bias vector length must match matrix D rows, it must be packed
* (stride between vector elements is 1). Bias vector is broadcasted to all columns and added before applying final
* postprocessing.
*/
CUBLASLT_EPILOGUE_BIAS = 4,
/** ReLu and Bias, apply Bias and then ReLu transform
*/
CUBLASLT_EPILOGUE_RELU_BIAS = (CUBLASLT_EPILOGUE_RELU | CUBLASLT_EPILOGUE_BIAS),
/** ReLu and Bias, apply Bias and then ReLu transform
*
* This epilogue mode produces an extra output, a ReLu bit-mask matrix,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_RELU_AUX_BIAS = (CUBLASLT_EPILOGUE_RELU_AUX | CUBLASLT_EPILOGUE_BIAS),
/* ReLu gradient. Apply ReLu gradient to matmul output. Store ReLu gradient in the output matrix.
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DRELU = 8 | 128,
/* ReLu and Bias gradients. Apply independently ReLu and Bias gradient to
* matmul output. Store ReLu gradient in the output matrix, and Bias gradient
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DRELU_BGRAD = CUBLASLT_EPILOGUE_DRELU | 16,
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)).
*/
CUBLASLT_EPILOGUE_GELU = 32,
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)).
*
* This epilogue mode outputs GELU input as a separate matrix (useful for training).
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_GELU_AUX = (CUBLASLT_EPILOGUE_GELU | 128),
/** GELU and Bias, apply Bias and then GELU transform
*/
CUBLASLT_EPILOGUE_GELU_BIAS = (CUBLASLT_EPILOGUE_GELU | CUBLASLT_EPILOGUE_BIAS),
/** GELU and Bias, apply Bias and then GELU transform
*
* This epilogue mode outputs GELU input as a separate matrix (useful for training).
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_GELU_AUX_BIAS = (CUBLASLT_EPILOGUE_GELU_AUX | CUBLASLT_EPILOGUE_BIAS),
/* GELU gradient. Apply GELU gradient to matmul output. Store GELU gradient in the output matrix.
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DGELU = 64 | 128,
/* GELU and Bias gradients. Apply independently GELU and Bias gradient to
* matmul output. Store GELU gradient in the output matrix, and Bias gradient
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DGELU_BGRAD = CUBLASLT_EPILOGUE_DGELU | 16,
/** Bias gradient based on the input matrix A.
*
* The bias size corresponds to the number of rows of the matrix D.
* The reduction happens over the GEMM's "k" dimension.
*
* Stores Bias gradient in the auxiliary output
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*/
CUBLASLT_EPILOGUE_BGRADA = 256,
/** Bias gradient based on the input matrix B.
*
* The bias size corresponds to the number of columns of the matrix D.
* The reduction happens over the GEMM's "k" dimension.
*
* Stores Bias gradient in the auxiliary output
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*/
CUBLASLT_EPILOGUE_BGRADB = 512,
} cublasLtEpilogue_t;
/** Matmul heuristic search mode
*/
typedef enum {
/** ask heuristics for best algo for given usecase
*/
CUBLASLT_SEARCH_BEST_FIT = 0,
/** only try to find best config for preconfigured algo id
*/
CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID = 1,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_02 = 2,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_03 = 3,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_04 = 4,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_05 = 5,
} cublasLtMatmulSearch_t;
/** Algo search preference to fine tune the heuristic function. */
typedef enum {
/** Search mode, see cublasLtMatmulSearch_t.
*
* uint32_t, default: CUBLASLT_SEARCH_BEST_FIT
*/
CUBLASLT_MATMUL_PREF_SEARCH_MODE = 0,
/** Maximum allowed workspace size in bytes.
*
* uint64_t, default: 0 - no workspace allowed
*/
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES = 1,
/** Reduction scheme mask, see cublasLtReductionScheme_t. Filters heuristic result to only include algo configs that
* use one of the required modes.
*
* E.g. mask value of 0x03 will allow only INPLACE and COMPUTE_TYPE reduction schemes.
*
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_MASK (allows all reduction schemes)
*/
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK = 3,
/** Minimum buffer alignment for matrix A (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix A that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_A_BYTES = 5,
/** Minimum buffer alignment for matrix B (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix B that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_B_BYTES = 6,
/** Minimum buffer alignment for matrix C (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix C that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_C_BYTES = 7,
/** Minimum buffer alignment for matrix D (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix D that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_D_BYTES = 8,
/** Maximum wave count.
*
* See cublasLtMatmulHeuristicResult_t::wavesCount.
*
* Selecting a non-zero value will exclude algorithms that report device utilization higher than specified.
*
* float, default: 0.0f
*/
CUBLASLT_MATMUL_PREF_MAX_WAVES_COUNT = 9,
/** Numerical implementation details mask, see cublasLtNumericalImplFlags_t. Filters heuristic result to only include
* algorithms that use the allowed implementations.
*
* uint64_t, default: uint64_t(-1) (allow everything)
*/
CUBLASLT_MATMUL_PREF_IMPL_MASK = 12,
} cublasLtMatmulPreferenceAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceInit_internal(cublasLtMatmulPreference_t pref, size_t size);
/** Initialize matmul heuristic search preference descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatmulPreferenceInit(cublasLtMatmulPreference_t pref) {
return cublasLtMatmulPreferenceInit_internal(pref, sizeof(*pref));
}
/** Create new matmul heuristic search preference descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceCreate(cublasLtMatmulPreference_t* pref);
/** Destroy matmul heuristic search preference descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceDestroy(cublasLtMatmulPreference_t pref);
/** Set matmul heuristic search preference descriptor attribute.
*
* \param[in] pref The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceSetAttribute( //
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matmul heuristic search preference descriptor attribute.
*
* \param[in] pref The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceGetAttribute( //
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Results structure used by cublasLtMatmulGetAlgo.
*
* Holds returned configured algo descriptor and its runtime properties.
*/
typedef struct {
/** Matmul algorithm descriptor.
*
* Must be initialized with cublasLtMatmulAlgoInit() if preferences' CUBLASLT_MATMUL_PERF_SEARCH_MODE is set to
* CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID
*/
cublasLtMatmulAlgo_t algo;
/** Actual size of workspace memory required.
*/
size_t workspaceSize;
/** Result status, other fields are only valid if after call to cublasLtMatmulAlgoGetHeuristic() this member is set to
* CUBLAS_STATUS_SUCCESS.
*/
cublasStatus_t state;
/** Waves count - a device utilization metric.
*
* wavesCount value of 1.0f suggests that when kernel is launched it will fully occupy the GPU.
*/
float wavesCount;
int reserved[4];
} cublasLtMatmulHeuristicResult_t;
/** Query cublasLt heuristic for algorithm appropriate for given use case.
*
* \param[in] lightHandle Pointer to the allocated cuBLASLt handle for the cuBLASLt
* context. See cublasLtHandle_t.
* \param[in] operationDesc Handle to the matrix multiplication descriptor.
* \param[in] Adesc Handle to the layout descriptors for matrix A.
* \param[in] Bdesc Handle to the layout descriptors for matrix B.
* \param[in] Cdesc Handle to the layout descriptors for matrix C.
* \param[in] Ddesc Handle to the layout descriptors for matrix D.
* \param[in] preference Pointer to the structure holding the heuristic search
* preferences descriptor. See cublasLtMatrixLayout_t.
* \param[in] requestedAlgoCount Size of heuristicResultsArray (in elements) and requested
* maximum number of algorithms to return.
* \param[in, out] heuristicResultsArray Output algorithms and associated runtime characteristics,
* ordered in increasing estimated compute time.
* \param[out] returnAlgoCount The number of heuristicResultsArray elements written.
*
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero
* \retval CUBLAS_STATUS_NOT_SUPPORTED if no heuristic function available for current configuration
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect
* heuristicResultsArray[0 to (returnAlgoCount - 1)].state
* for detail status of results
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetHeuristic(cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
cublasLtMatmulPreference_t preference,
int requestedAlgoCount,
cublasLtMatmulHeuristicResult_t heuristicResultsArray[],
int* returnAlgoCount);
/* ---------------------------------------------------------------------------------------*/
/* Lower level API to be able to implement own Heuristic and Find routines */
/* ---------------------------------------------------------------------------------------*/
/** Routine to get all algo IDs that can potentially run
*
* \param[in] int requestedAlgoCount requested number of algos (must be less or equal to size of algoIdsA
* (in elements)) \param[out] algoIdsA array to write algoIds to \param[out] returnAlgoCount number of algoIds
* actually written
*
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect returnAlgoCount to get actual number of IDs
* available
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetIds(cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int requestedAlgoCount,
int algoIdsArray[],
int* returnAlgoCount);
/** Initialize algo structure
*
* \retval CUBLAS_STATUS_INVALID_VALUE if algo is NULL or algoId is outside of recognized range
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algoId is not supported for given combination of data types
* \retval CUBLAS_STATUS_SUCCESS if the structure was successfully initialized
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoInit(cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int algoId,
cublasLtMatmulAlgo_t* algo);
/** Check configured algo descriptor for correctness and support on current device.
*
* Result includes required workspace size and calculated wave count.
*
* CUBLAS_STATUS_SUCCESS doesn't fully guarantee algo will run (will fail if e.g. buffers are not correctly aligned);
* but if cublasLtMatmulAlgoCheck fails, the algo will not run.
*
* \param[in] algo algo configuration to check
* \param[out] result result structure to report algo runtime characteristics; algo field is never updated
*
* \retval CUBLAS_STATUS_INVALID_VALUE if matrix layout descriptors or operation descriptor don't match algo
* descriptor
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algo configuration or data type combination is not currently supported on
* given device
* \retval CUBLAS_STATUS_ARCH_MISMATCH if algo configuration cannot be run using the selected device
* \retval CUBLAS_STATUS_SUCCESS if check was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCheck( //
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t* algo, ///< may point to result->algo
cublasLtMatmulHeuristicResult_t* result);
/** Capabilities Attributes that can be retrieved from an initialized Algo structure
*/
typedef enum {
/** support for split K, see CUBLASLT_ALGO_CONFIG_SPLITK_NUM
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_SPLITK_SUPPORT = 0,
/** reduction scheme mask, see cublasLtReductionScheme_t; shows supported reduction schemes, if reduction scheme is
* not masked out it is supported.
*
* e.g. int isReductionSchemeComputeTypeSupported ? (reductionSchemeMask & CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE) ==
* CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE ? 1 : 0;
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_REDUCTION_SCHEME_MASK = 1,
/** support for cta swizzling, see CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING
*
* uint32_t, 0 means no support, 1 means supported value of 1, other values are reserved
*/
CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORT = 2,
/** support strided batch
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT = 3,
/** support results out of place (D != C in D = alpha.A.B + beta.C)
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_OUT_OF_PLACE_RESULT_SUPPORT = 4,
/** syrk/herk support (on top of regular gemm)
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_UPLO_SUPPORT = 5,
/** tile ids possible to use, see cublasLtMatmulTile_t; if no tile ids are supported use
* CUBLASLT_MATMUL_TILE_UNDEFINED
*
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count
*
* array of uint32_t
*/
CUBLASLT_ALGO_CAP_TILE_IDS = 6,
/** custom option range is from 0 to CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX (inclusive), see
* CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION
*
* int32_t
*/
CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX = 7,
/** whether algorithm supports custom (not COL or ROW memory order), see cublasLtOrder_t
*
* int32_t 0 means only COL and ROW memory order is allowed, non-zero means that algo might have different
* requirements;
*/
CUBLASLT_ALGO_CAP_CUSTOM_MEMORY_ORDER = 10,
/** bitmask enumerating pointer modes algorithm supports
*
* uint32_t, see cublasLtPointerModeMask_t
*/
CUBLASLT_ALGO_CAP_POINTER_MODE_MASK = 11,
/** bitmask enumerating kinds of postprocessing algorithm supports in the epilogue
*
* uint32_t, see cublasLtEpilogue_t
*/
CUBLASLT_ALGO_CAP_EPILOGUE_MASK = 12,
/** stages ids possible to use, see cublasLtMatmulStages_t; if no stages ids are supported use
* CUBLASLT_MATMUL_STAGES_UNDEFINED
*
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count
*
* array of uint32_t
*/
CUBLASLT_ALGO_CAP_STAGES_IDS = 13,
/** support for nagative ld for all of the matrices
*
* int32_t 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_LD_NEGATIVE = 14,
/** details about algorithm's implementation that affect it's numerical behavior
*
* uint64_t, see cublasLtNumericalImplFlags_t
*/
CUBLASLT_ALGO_CAP_NUMERICAL_IMPL_FLAGS = 15,
/** minimum alignment required for A matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_A_BYTES = 16,
/** minimum alignment required for B matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_B_BYTES = 17,
/** minimum alignment required for C matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_C_BYTES = 18,
/** minimum alignment required for D matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_D_BYTES = 19,
} cublasLtMatmulAlgoCapAttributes_t;
/** Get algo capability attribute.
*
* E.g. to get list of supported Tile IDs:
* cublasLtMatmulTile_t tiles[CUBLASLT_MATMUL_TILE_END];
* size_t num_tiles, size_written;
* if (cublasLtMatmulAlgoCapGetAttribute(algo, CUBLASLT_ALGO_CAP_TILE_IDS, tiles, sizeof(tiles), size_written) ==
* CUBLAS_STATUS_SUCCESS) { num_tiles = size_written / sizeof(tiles[0]);
* }
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCapGetAttribute(const cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoCapAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Algo Configuration Attributes that can be set according to the Algo capabilities
*/
typedef enum {
/** algorithm index, see cublasLtMatmulAlgoGetIds()
*
* readonly, set by cublasLtMatmulAlgoInit()
* int32_t
*/
CUBLASLT_ALGO_CONFIG_ID = 0,
/** tile id, see cublasLtMatmulTile_t
*
* uint32_t, default: CUBLASLT_MATMUL_TILE_UNDEFINED
*/
CUBLASLT_ALGO_CONFIG_TILE_ID = 1,
/** Number of K splits. If the number of K splits is greater than one, SPLITK_NUM parts
* of matrix multiplication will be computed in parallel. The results will be accumulated
* according to CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME
*
* int32_t, default: 1
*/
CUBLASLT_ALGO_CONFIG_SPLITK_NUM = 2,
/** reduction scheme, see cublasLtReductionScheme_t
*
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_NONE
*/
CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME = 3,
/** cta swizzling, change mapping from CUDA grid coordinates to parts of the matrices
*
* possible values: 0, 1, other values reserved
*
* uint32_t, default: 0
*/
CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING = 4,
/** custom option, each algorithm can support some custom options that don't fit description of the other config
* attributes, see CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX to get accepted range for any specific case
*
* uint32_t, default: 0
*/
CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION = 5,
/** stages id, see cublasLtMatmulStages_t
*
* uint32_t, default: CUBLASLT_MATMUL_STAGES_UNDEFINED
*/
CUBLASLT_ALGO_CONFIG_STAGES_ID = 6,
/** inner shape id, see cublasLtMatmulInnerShape_t
*
* uint16_t, default: 0 (CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED)
*/
CUBLASLT_ALGO_CONFIG_INNER_SHAPE_ID = 7,
/** Thread Block Cluster shape id, see cublasLtClusterShape_t. Defines cluster size to use.
*
* uint16_t, default: 0 (CUBLASLT_CLUSTER_SHAPE_AUTO)
*/
CUBLASLT_ALGO_CONFIG_CLUSTER_SHAPE_ID = 8,
} cublasLtMatmulAlgoConfigAttributes_t;
/** Set algo configuration attribute.
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigSetAttribute(cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get algo configuration attribute.
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigGetAttribute(const cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Experimental: Logger callback type.
*/
typedef void (*cublasLtLoggerCallback_t)(int logLevel, const char* functionName, const char* message);
/** Experimental: Logger callback setter.
*
* \param[in] callback a user defined callback function to be called by the logger
*
* \retval CUBLAS_STATUS_SUCCESS if callback was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetCallback(cublasLtLoggerCallback_t callback);
/** Experimental: Log file setter.
*
* \param[in] file an open file with write permissions
*
* \retval CUBLAS_STATUS_SUCCESS if log file was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetFile(FILE* file);
/** Experimental: Open log file.
*
* \param[in] logFile log file path. if the log file does not exist, it will be created
*
* \retval CUBLAS_STATUS_SUCCESS if log file was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerOpenFile(const char* logFile);
/** Experimental: Log level setter.
*
* \param[in] level log level, should be one of the following:
* 0. Off
* 1. Errors
* 2. Performance Trace
* 3. Performance Hints
* 4. Heuristics Trace
* 5. API Trace
*
* \retval CUBLAS_STATUS_INVALID_VALUE if log level is not one of the above levels
*
* \retval CUBLAS_STATUS_SUCCESS if log level was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetLevel(int level);
/** Experimental: Log mask setter.
*
* \param[in] mask log mask, should be a combination of the following masks:
* 0. Off
* 1. Errors
* 2. Performance Trace
* 4. Performance Hints
* 8. Heuristics Trace
* 16. API Trace
*
* \retval CUBLAS_STATUS_SUCCESS if log mask was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetMask(int mask);
/** Experimental: Disable logging for the entire session.
*
* \retval CUBLAS_STATUS_SUCCESS if disabled logging
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerForceDisable();
#if defined(__cplusplus)
}
#endif /* __cplusplus */
|