File size: 4,302 Bytes
53af1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Implementation of matrix FGLM Groebner basis conversion algorithm. """


from sympy.polys.monomials import monomial_mul, monomial_div

def matrix_fglm(F, ring, O_to):
    """
    Converts the reduced Groebner basis ``F`` of a zero-dimensional
    ideal w.r.t. ``O_from`` to a reduced Groebner basis
    w.r.t. ``O_to``.

    References
    ==========

    .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
           Computation of Zero-dimensional Groebner Bases by Change of
           Ordering
    """
    domain = ring.domain
    ngens = ring.ngens

    ring_to = ring.clone(order=O_to)

    old_basis = _basis(F, ring)
    M = _representing_matrices(old_basis, F, ring)

    # V contains the normalforms (wrt O_from) of S
    S = [ring.zero_monom]
    V = [[domain.one] + [domain.zero] * (len(old_basis) - 1)]
    G = []

    L = [(i, 0) for i in range(ngens)]  # (i, j) corresponds to x_i * S[j]
    L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)
    t = L.pop()

    P = _identity_matrix(len(old_basis), domain)

    while True:
        s = len(S)
        v = _matrix_mul(M[t[0]], V[t[1]])
        _lambda = _matrix_mul(P, v)

        if all(_lambda[i] == domain.zero for i in range(s, len(old_basis))):
            # there is a linear combination of v by V
            lt = ring.term_new(_incr_k(S[t[1]], t[0]), domain.one)
            rest = ring.from_dict({S[i]: _lambda[i] for i in range(s)})

            g = (lt - rest).set_ring(ring_to)
            if g:
                G.append(g)
        else:
            # v is linearly independent from V
            P = _update(s, _lambda, P)
            S.append(_incr_k(S[t[1]], t[0]))
            V.append(v)

            L.extend([(i, s) for i in range(ngens)])
            L = list(set(L))
            L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)

        L = [(k, l) for (k, l) in L if all(monomial_div(_incr_k(S[l], k), g.LM) is None for g in G)]

        if not L:
            G = [ g.monic() for g in G ]
            return sorted(G, key=lambda g: O_to(g.LM), reverse=True)

        t = L.pop()


def _incr_k(m, k):
    return tuple(list(m[:k]) + [m[k] + 1] + list(m[k + 1:]))


def _identity_matrix(n, domain):
    M = [[domain.zero]*n for _ in range(n)]

    for i in range(n):
        M[i][i] = domain.one

    return M


def _matrix_mul(M, v):
    return [sum([row[i] * v[i] for i in range(len(v))]) for row in M]


def _update(s, _lambda, P):
    """
    Update ``P`` such that for the updated `P'` `P' v = e_{s}`.
    """
    k = min([j for j in range(s, len(_lambda)) if _lambda[j] != 0])

    for r in range(len(_lambda)):
        if r != k:
            P[r] = [P[r][j] - (P[k][j] * _lambda[r]) / _lambda[k] for j in range(len(P[r]))]

    P[k] = [P[k][j] / _lambda[k] for j in range(len(P[k]))]
    P[k], P[s] = P[s], P[k]

    return P


def _representing_matrices(basis, G, ring):
    r"""
    Compute the matrices corresponding to the linear maps `m \mapsto
    x_i m` for all variables `x_i`.
    """
    domain = ring.domain
    u = ring.ngens-1

    def var(i):
        return tuple([0] * i + [1] + [0] * (u - i))

    def representing_matrix(m):
        M = [[domain.zero] * len(basis) for _ in range(len(basis))]

        for i, v in enumerate(basis):
            r = ring.term_new(monomial_mul(m, v), domain.one).rem(G)

            for monom, coeff in r.terms():
                j = basis.index(monom)
                M[j][i] = coeff

        return M

    return [representing_matrix(var(i)) for i in range(u + 1)]


def _basis(G, ring):
    r"""
    Computes a list of monomials which are not divisible by the leading
    monomials wrt to ``O`` of ``G``. These monomials are a basis of
    `K[X_1, \ldots, X_n]/(G)`.
    """
    order = ring.order

    leading_monomials = [g.LM for g in G]
    candidates = [ring.zero_monom]
    basis = []

    while candidates:
        t = candidates.pop()
        basis.append(t)

        new_candidates = [_incr_k(t, k) for k in range(ring.ngens)
            if all(monomial_div(_incr_k(t, k), lmg) is None
            for lmg in leading_monomials)]
        candidates.extend(new_candidates)
        candidates.sort(key=order, reverse=True)

    basis = list(set(basis))

    return sorted(basis, key=order)