File size: 17,800 Bytes
0ee13d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple, Union
import torchgen.api.ufunc as ufunc
from torchgen.api.translate import translate
from torchgen.api.types import (
BaseCType,
Binding,
CType,
Expr,
NamedCType,
opmath_t,
scalar_t,
StructuredImplSignature,
VectorizedCType,
)
from torchgen.api.ufunc import UfunctorBindings
from torchgen.context import with_native_function
from torchgen.model import (
Argument,
BaseTy,
BaseType,
DispatchKey,
NativeFunctionsGroup,
ScalarType,
UfuncKey,
)
from torchgen.utils import OrderedSet
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# CUDA STUFF
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# NB: not bothering to generate dispatch stub forward declaration in header,
# we can just paste it whereever necessary
# TODO: use BackendIndex
# dispatch_key: DispatchKey # only CPU/CUDA right now
# Represents functors for implementing CUDA ufuncs.
# Functors are templated by scalar_t because when USERS instantiate functors
# they are templated. A functor looks something like this:
#
# template <typename scalar_t>
# struct CUDAFunctorOnSelf_add {
# using opmath_t = at::opmath_type<scalar_t>;
# opmath_t other_;
# opmath_t alpha_;
# CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha)
# : other_(other), alpha_(alpha) {}
# __device__ scalar_t operator()(scalar_t self) {
# return ufunc::add(static_cast<opmath_t>(self), other_, alpha_);
# }
# };
#
@dataclass(frozen=True)
class UfunctorSignature:
g: NativeFunctionsGroup
scalar_tensor_idx: Optional[int]
name: str
def arguments(self) -> UfunctorBindings:
return ufunc.ufunctor_arguments(
self.g, scalar_tensor_idx=self.scalar_tensor_idx, scalar_t=scalar_t
)
def fields(self) -> List[Binding]:
# fields are renamed to have a trailing underscore, as is conventional
return [b.rename(f"{b.name}_") for b in self.arguments().ctor]
def returns_type(self) -> CType:
# TODO: don't hardcode; return type will be inferred based on tags on
# the native function
return BaseCType(scalar_t)
def decl_fields(self) -> str:
return "\n".join(f"{f.type} {f.name};" for f in self.fields())
def inline_defn_ctor(self) -> str:
args_str = ", ".join(a.decl() for a in self.arguments().ctor)
# NB: hypothetically could do this with translate but the
# transition here is very regular
init_str = ", ".join(f"{a.name}_({a.name})" for a in self.arguments().ctor)
return f"{self.name}({args_str}) : {init_str} {{}}"
def decl_apply(self) -> str:
args_str = ", ".join(a.decl() for a in self.arguments().apply)
return f"{self.returns_type().cpp_type()} operator()({args_str}) const"
@dataclass(frozen=True)
class UfuncSignature:
g: NativeFunctionsGroup
name: str
compute_t: CType
def arguments(self) -> List[Binding]:
return ufunc.ufunc_arguments(self.g, compute_t=self.compute_t)
def call(self, ctx: Sequence[Union[Binding, Expr]]) -> str:
return f"{self.name}({', '.join(a.expr for a in translate(ctx, self.arguments()))})"
# steps:
# 1. take the functional signature
# 2. use api.ufunc to convert it to template signature. this establishes
# the type of the template function
# 3. use api.ufunc (II) to generate a split struct / operator() signature.
# this establish context in which we call the template signature
#
# StructuredImplSignature context
# ~> functor constructor sig
#
# Functor constructor context
# ~> functor fields sig
#
# Functor apply context (functor fields + functor apply sig)
# ~> template sig
#
def eligible_for_binary_scalar_specialization(g: NativeFunctionsGroup) -> bool:
num_tensors = sum(
1 for a in g.functional.func.arguments.flat_non_out if a.type.is_tensor_like()
)
return num_tensors == 2
def compute_ufunc_cuda_functors(
g: NativeFunctionsGroup,
) -> Tuple[Dict[ScalarType, Dict[UfuncKey, UfunctorSignature]], str]:
# First, build the functors.
ufunctor_sigs: Dict[ScalarType, Dict[UfuncKey, UfunctorSignature]] = {}
ufunctors: List[str] = []
loops = g.out.ufunc_inner_loop
scalar_tensor_idx_lookup = {
UfuncKey.CUDAFunctorOnSelf: 1,
UfuncKey.CUDAFunctorOnOther: 0,
UfuncKey.CUDAFunctor: None,
}
if eligible_for_binary_scalar_specialization(g):
keys = [
UfuncKey.CUDAFunctorOnSelf,
UfuncKey.CUDAFunctorOnOther,
UfuncKey.CUDAFunctor,
]
else:
keys = [UfuncKey.CUDAFunctor]
for k in [UfuncKey.CUDAFunctorOnSelf, UfuncKey.CUDAFunctorOnOther]:
assert k not in loops, f"cannot use {k} on non-binary function"
for k in keys:
# If the key was directly defined, skip functor codegen; we assume the
# user already done it for us
if k in loops:
ufunctor_sig = UfunctorSignature(
g, scalar_tensor_idx=scalar_tensor_idx_lookup[k], name=loops[k].name
)
for dtype in loops[k].supported_dtypes:
ufunctor_sigs.setdefault(dtype, {})[k] = ufunctor_sig
continue
# Note [ScalarOnly and Generic must match names for CUDA]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Otherwise, look in ANY of the generic entries. For simplicity of
# codegen, both ScalarOnly and Generic are defined, the ufunc name
# must match (if they didn't match, we'd have to generate distinct
# functors per dtype, which is awful, so we're not going to do it unless
# someone really forces us to)
ufunc_name = None
supported_dtypes: OrderedSet[ScalarType] = OrderedSet()
for lk in [UfuncKey.ScalarOnly, UfuncKey.Generic]:
if lk not in loops:
continue
if ufunc_name is None:
ufunc_name = loops[lk].name
else:
# See Note [ScalarOnly and Generic must match names for CUDA]
assert (
ufunc_name == loops[lk].name
), "ScalarOnly and Generic must have same ufunc name"
supported_dtypes |= loops[lk].supported_dtypes
assert ufunc_name is not None
name = f"{k}_{ufunc_name}"
ufunctor_sig = UfunctorSignature(
g, scalar_tensor_idx=scalar_tensor_idx_lookup[k], name=name
)
for dtype in supported_dtypes:
ufunctor_sigs.setdefault(dtype, {})[k] = ufunctor_sig
ufunc_sig = UfuncSignature(
g, name=f"ufunc::{ufunc_name}", compute_t=BaseCType(opmath_t)
)
apply_ctx = ufunctor_sig.fields() + ufunctor_sig.arguments().apply
ufunctors.append(
f"""
template <typename scalar_t>
struct {ufunctor_sig.name} {{
using opmath_t = at::opmath_type<scalar_t>;
{ufunctor_sig.decl_fields()}
{ufunctor_sig.inline_defn_ctor()}
__device__ {ufunctor_sig.decl_apply()} {{
return {ufunc_sig.call(apply_ctx)};
}}
}};
"""
)
return ufunctor_sigs, "\n".join(ufunctors)
@dataclass(frozen=True)
class BinaryScalarSpecializationConfig:
scalar_idx: int
ctor_tensor: str
ufunc_key: UfuncKey
BinaryScalarSpecializationConfigs = [
BinaryScalarSpecializationConfig(
scalar_idx=0,
ctor_tensor="self",
ufunc_key=UfuncKey.CUDAFunctorOnOther,
),
BinaryScalarSpecializationConfig(
scalar_idx=1,
ctor_tensor="other",
ufunc_key=UfuncKey.CUDAFunctorOnSelf,
),
]
def compute_ufunc_cuda_dtype_body(
g: NativeFunctionsGroup,
dtype: ScalarType,
inner_loops: Dict[UfuncKey, UfunctorSignature],
parent_ctx: Sequence[Binding],
) -> str:
body = "using opmath_t = at::opmath_type<scalar_t>;"
body += "if (false) {}\n" # for ease of codegen
for config in BinaryScalarSpecializationConfigs:
if config.ufunc_key not in inner_loops:
continue
ufunctor_sig = inner_loops[config.ufunc_key]
scalar_idx = config.scalar_idx + 1
# Make a copy and at the same time widen the type (not permissible
# without copy; we don't want to mutate the input argument anyway)
ctx: List[Union[Expr, Binding]] = list(parent_ctx)
ctx.append(
Expr(
expr=f"iter.scalar_value<opmath_t>({scalar_idx})",
type=NamedCType(config.ctor_tensor, BaseCType(opmath_t)),
)
)
ufunctor_ctor_exprs_str = ", ".join(
a.expr for a in translate(ctx, ufunctor_sig.arguments().ctor)
)
# NB: ufunctor must be allocated before iter.remove_operand is called,
# as it relies on iter
body += f"""\
else if (iter.is_cpu_scalar({scalar_idx})) {{
{ufunctor_sig.name}<scalar_t> ufunctor({ufunctor_ctor_exprs_str});
iter.remove_operand({scalar_idx});
gpu_kernel(iter, ufunctor);
}}"""
ufunctor_sig = inner_loops[UfuncKey.CUDAFunctor]
ufunctor_ctor_exprs_str = ", ".join(
a.expr for a in translate(parent_ctx, ufunctor_sig.arguments().ctor)
)
body += f"""
else {{
gpu_kernel(iter, {ufunctor_sig.name}<scalar_t>({ufunctor_ctor_exprs_str}));
}}
"""
return body
@with_native_function
def compute_ufunc_cuda(g: NativeFunctionsGroup) -> str:
# First, build the functors, indexing them by dtype
ufunctor_sigs, ufunctors = compute_ufunc_cuda_functors(g)
# Next, build the conditionals
sig = StructuredImplSignature(g, ufunc.kernel_name(g, DispatchKey.CUDA))
dtype_cases = []
for dtype, inner_ufunc_sigs in ufunctor_sigs.items():
dtype_cases.append(
f"""
AT_DISPATCH_CASE(at::ScalarType::{dtype},
[&]() {{
{compute_ufunc_cuda_dtype_body(g, dtype, inner_ufunc_sigs, sig.arguments())}
}}
)
"""
)
dtype_cases_str = "\n".join(dtype_cases)
stub_sig = StubSignature(g)
return f"""
{ufunctors}
{stub_sig.type_defn()};
{stub_sig.dispatch_decl()};
{stub_sig.kernel_defn()} {{
AT_DISPATCH_SWITCH(iter.common_dtype(), "{sig.name}",
{dtype_cases_str}
);
}}
REGISTER_DISPATCH({stub_sig.name}, &{stub_sig.kernel_name});
{sig.defn()} {{
{stub_sig.direct_call(sig.arguments())};
}}
"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# CPU STUFF
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@dataclass(frozen=True)
class StubSignature:
g: NativeFunctionsGroup
@property
def name(self) -> str:
return f"{str(self.g.functional.func.name.name)}_stub"
@property
def kernel_name(self) -> str:
return f"{str(self.g.functional.func.name.name)}_kernel"
@property
def type_name(self) -> str:
return f"{str(self.g.functional.func.name.name)}_fn"
def arguments(self) -> List[Binding]:
return ufunc.stub_arguments(self.g)
def type(self) -> str:
cpp_args = self.arguments()
return f"void(*)(TensorIteratorBase&, {', '.join(a.type for a in cpp_args)})"
def dispatch_decl(self) -> str:
return f"DECLARE_DISPATCH({self.type_name}, {self.name})"
def dispatch_defn(self) -> str:
return f"DEFINE_DISPATCH({self.name})"
def kernel_defn(self) -> str:
return f"void {self.kernel_name}(TensorIteratorBase& iter, {', '.join(a.defn() for a in self.arguments())})"
def type_defn(self) -> str:
return f"using {self.type_name} = {self.type()}"
# must be called from context where this is TensorIteratorBase*
def call(self, ctx: Sequence[Binding]) -> str:
return f"{self.name}(device_type(), *this, {', '.join(a.expr for a in translate(ctx, self.arguments()))})"
# used in CUDA to skip the unnecessary dynamic dispatch
def direct_call(self, ctx: Sequence[Binding]) -> str:
return f"{self.kernel_name}(*this, {', '.join(a.expr for a in translate(ctx, self.arguments()))})"
@with_native_function
def compute_ufunc_cpu(g: NativeFunctionsGroup) -> str:
stub_sig = StubSignature(g)
sig = StructuredImplSignature(g, ufunc.kernel_name(g, DispatchKey.CPU))
return f"""
{stub_sig.type_defn()};
{stub_sig.dispatch_decl()};
{stub_sig.dispatch_defn()};
{sig.defn()} {{
{stub_sig.call(sig.arguments())};
}}
"""
def compute_ufunc_cpu_dtype_body(
g: NativeFunctionsGroup,
dtype: ScalarType,
inner_loops: Dict[UfuncKey, UfuncSignature],
parent_ctx: Sequence[Binding],
) -> str:
assert UfuncKey.CPUScalar in inner_loops, f"{dtype}, {inner_loops.keys()}"
assert inner_loops.keys() <= {UfuncKey.CPUScalar, UfuncKey.CPUVector}
scalar_loop = inner_loops[UfuncKey.CPUScalar]
vec_loop = None
if UfuncKey.CPUVector in inner_loops:
vec_loop = inner_loops[UfuncKey.CPUVector]
# NB: We DON'T use translate here, because translate is
# incapable of CSE'ing the scalar accesses in case it is also
# used by Vectorized; also, the unpacking here is very simple
# and only affects Scalar; everything else is implicitly captured
# by the lambda
# Setup scalar in scope
body = []
ctx = []
for b in parent_ctx:
if isinstance(b.argument, Argument) and b.argument.type != BaseType(
BaseTy.Scalar
):
continue
body.append(f"auto _s_{b.name} = {b.name}.to<scalar_t>();")
ctx.append(Expr(f"_s_{b.name}", NamedCType(b.nctype.name, BaseCType(scalar_t))))
if vec_loop is not None:
for b in parent_ctx:
if isinstance(b.argument, Argument) and b.argument.type != BaseType(
BaseTy.Scalar
):
continue
body.append(
f"auto _v_{b.name} = at::vec::Vectorized<scalar_t>(_s_{b.name});"
)
ctx.append(
Expr(
f"_v_{b.name}",
NamedCType(b.nctype.name, VectorizedCType(BaseCType(scalar_t))),
)
)
# Setup lambda signature
# NB: simplified version of ufunctor_arguments
scalar_bindings = []
vec_bindings = []
for a in g.functional.func.arguments.flat_non_out:
if not a.type.is_tensor_like():
continue
assert a.type == BaseType(BaseTy.Tensor)
scalar_bindings.append(
Binding(
name=a.name,
nctype=NamedCType(a.name, BaseCType(scalar_t)),
argument=a,
)
)
if vec_loop is not None:
vec_bindings.append(
Binding(
name=a.name,
nctype=NamedCType(a.name, VectorizedCType(BaseCType(scalar_t))),
argument=a,
)
)
def with_ctx(b: Sequence[Binding]) -> List[Union[Expr, Binding]]:
r: List[Union[Expr, Binding]] = []
r.extend(ctx)
r.extend(b)
return r
body_str = "\n".join(body)
if vec_loop is not None:
return f"""
{body_str}
cpu_kernel_vec(iter,
[=]({', '.join(b.decl() for b in scalar_bindings)}) {{ return {scalar_loop.call(with_ctx(scalar_bindings))}; }},
[=]({', '.join(b.decl() for b in vec_bindings)}) {{ return {vec_loop.call(with_ctx(vec_bindings))}; }}
);
"""
else:
return f"""
{body_str}
cpu_kernel(iter,
[=]({', '.join(b.decl() for b in scalar_bindings)}) {{ return {scalar_loop.call(with_ctx(scalar_bindings))}; }}
);
"""
@with_native_function
def compute_ufunc_cpu_kernel(g: NativeFunctionsGroup) -> str:
stub_sig = StubSignature(g)
# Reindex the ufunc by dtypes; processing generic/scalaronly as well
loops = g.out.ufunc_inner_loop
ufunc_sigs: Dict[ScalarType, Dict[UfuncKey, UfuncSignature]] = {}
for k in [UfuncKey.CPUScalar, UfuncKey.CPUVector]:
lks = []
# ORDER MATTERS: this specifies overriding precedence
if k in loops: # should happen rarely
lks.append(k)
if UfuncKey.ScalarOnly in loops and k is UfuncKey.CPUScalar:
lks.append(UfuncKey.ScalarOnly)
if UfuncKey.Generic in loops:
lks.append(UfuncKey.Generic)
# TODO: don't hardcode ufunc:: namespace here, should be centralized smh
for lk in lks:
for dtype in loops[lk].supported_dtypes:
compute_t: CType
if k is UfuncKey.CPUScalar:
compute_t = BaseCType(scalar_t)
elif k is UfuncKey.CPUVector:
compute_t = VectorizedCType(BaseCType(scalar_t))
else:
raise AssertionError()
inner_ufunc_sigs = ufunc_sigs.setdefault(dtype, {})
if k not in inner_ufunc_sigs:
inner_ufunc_sigs[k] = UfuncSignature(
g, name=f"ufunc::{loops[lk].name}", compute_t=compute_t
)
# Build the conditionals
dtype_cases = []
for dtype, inner_ufunc_sigs in ufunc_sigs.items():
dtype_cases.append(
f"""
AT_DISPATCH_CASE(at::ScalarType::{dtype},
[&]() {{
{compute_ufunc_cpu_dtype_body(g, dtype, inner_ufunc_sigs, stub_sig.arguments())}
}}
)
"""
)
dtype_cases_str = "\n".join(dtype_cases)
return f"""
namespace {{
{stub_sig.kernel_defn()} {{
AT_DISPATCH_SWITCH(iter.common_dtype(), "{stub_sig.name}",
{dtype_cases_str}
);
}}
}} // anonymous namespace
{stub_sig.type_defn()};
{stub_sig.dispatch_decl()};
REGISTER_DISPATCH({stub_sig.name}, &{stub_sig.kernel_name});
"""
|