File size: 4,620 Bytes
ceb378e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""Implementation of :class:`ComplexField` class. """
from sympy.core.numbers import Float, I
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import DomainError, CoercionFailed
from sympy.utilities import public
@public
class ComplexField(Field, CharacteristicZero, SimpleDomain):
"""Complex numbers up to the given precision. """
rep = 'CC'
is_ComplexField = is_CC = True
is_Exact = False
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
_default_precision = 53
@property
def has_default_precision(self):
return self.precision == self._default_precision
@property
def precision(self):
return self._context.prec
@property
def dps(self):
return self._context.dps
@property
def tolerance(self):
return self._context.tolerance
def __init__(self, prec=_default_precision, dps=None, tol=None):
context = MPContext(prec, dps, tol, False)
context._parent = self
self._context = context
self.dtype = context.mpc
self.zero = self.dtype(0)
self.one = self.dtype(1)
def __eq__(self, other):
return (isinstance(other, ComplexField)
and self.precision == other.precision
and self.tolerance == other.tolerance)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
def to_sympy(self, element):
"""Convert ``element`` to SymPy number. """
return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
def from_sympy(self, expr):
"""Convert SymPy's number to ``dtype``. """
number = expr.evalf(n=self.dps)
real, imag = number.as_real_imag()
if real.is_Number and imag.is_Number:
return self.dtype(real, imag)
else:
raise CoercionFailed("expected complex number, got %s" % expr)
def from_ZZ(self, element, base):
return self.dtype(element)
def from_QQ(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_ZZ_python(self, element, base):
return self.dtype(element)
def from_QQ_python(self, element, base):
return self.dtype(element.numerator) / element.denominator
def from_ZZ_gmpy(self, element, base):
return self.dtype(int(element))
def from_QQ_gmpy(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_GaussianIntegerRing(self, element, base):
return self.dtype(int(element.x), int(element.y))
def from_GaussianRationalField(self, element, base):
x = element.x
y = element.y
return (self.dtype(int(x.numerator)) / int(x.denominator) +
self.dtype(0, int(y.numerator)) / int(y.denominator))
def from_AlgebraicField(self, element, base):
return self.from_sympy(base.to_sympy(element).evalf(self.dps))
def from_RealField(self, element, base):
return self.dtype(element)
def from_ComplexField(self, element, base):
if self == base:
return element
else:
return self.dtype(element)
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError("there is no ring associated with %s" % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
raise DomainError("there is no exact domain associated with %s" % self)
def is_negative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
return self.one
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
return a*b
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return self._context.almosteq(a, b, tolerance)
CC = ComplexField()
|