File size: 4,620 Bytes
ceb378e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""Implementation of :class:`ComplexField` class. """


from sympy.core.numbers import Float, I
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import DomainError, CoercionFailed
from sympy.utilities import public

@public
class ComplexField(Field, CharacteristicZero, SimpleDomain):
    """Complex numbers up to the given precision. """

    rep = 'CC'

    is_ComplexField = is_CC = True

    is_Exact = False
    is_Numerical = True

    has_assoc_Ring = False
    has_assoc_Field = True

    _default_precision = 53

    @property
    def has_default_precision(self):
        return self.precision == self._default_precision

    @property
    def precision(self):
        return self._context.prec

    @property
    def dps(self):
        return self._context.dps

    @property
    def tolerance(self):
        return self._context.tolerance

    def __init__(self, prec=_default_precision, dps=None, tol=None):
        context = MPContext(prec, dps, tol, False)
        context._parent = self
        self._context = context

        self.dtype = context.mpc
        self.zero = self.dtype(0)
        self.one = self.dtype(1)

    def __eq__(self, other):
        return (isinstance(other, ComplexField)
           and self.precision == other.precision
           and self.tolerance == other.tolerance)

    def __hash__(self):
        return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))

    def to_sympy(self, element):
        """Convert ``element`` to SymPy number. """
        return Float(element.real, self.dps) + I*Float(element.imag, self.dps)

    def from_sympy(self, expr):
        """Convert SymPy's number to ``dtype``. """
        number = expr.evalf(n=self.dps)
        real, imag = number.as_real_imag()

        if real.is_Number and imag.is_Number:
            return self.dtype(real, imag)
        else:
            raise CoercionFailed("expected complex number, got %s" % expr)

    def from_ZZ(self, element, base):
        return self.dtype(element)

    def from_QQ(self, element, base):
        return self.dtype(int(element.numerator)) / int(element.denominator)

    def from_ZZ_python(self, element, base):
        return self.dtype(element)

    def from_QQ_python(self, element, base):
        return self.dtype(element.numerator) / element.denominator

    def from_ZZ_gmpy(self, element, base):
        return self.dtype(int(element))

    def from_QQ_gmpy(self, element, base):
        return self.dtype(int(element.numerator)) / int(element.denominator)

    def from_GaussianIntegerRing(self, element, base):
        return self.dtype(int(element.x), int(element.y))

    def from_GaussianRationalField(self, element, base):
        x = element.x
        y = element.y
        return (self.dtype(int(x.numerator)) / int(x.denominator) +
                self.dtype(0, int(y.numerator)) / int(y.denominator))

    def from_AlgebraicField(self, element, base):
        return self.from_sympy(base.to_sympy(element).evalf(self.dps))

    def from_RealField(self, element, base):
        return self.dtype(element)

    def from_ComplexField(self, element, base):
        if self == base:
            return element
        else:
            return self.dtype(element)

    def get_ring(self):
        """Returns a ring associated with ``self``. """
        raise DomainError("there is no ring associated with %s" % self)

    def get_exact(self):
        """Returns an exact domain associated with ``self``. """
        raise DomainError("there is no exact domain associated with %s" % self)

    def is_negative(self, element):
        """Returns ``False`` for any ``ComplexElement``. """
        return False

    def is_positive(self, element):
        """Returns ``False`` for any ``ComplexElement``. """
        return False

    def is_nonnegative(self, element):
        """Returns ``False`` for any ``ComplexElement``. """
        return False

    def is_nonpositive(self, element):
        """Returns ``False`` for any ``ComplexElement``. """
        return False

    def gcd(self, a, b):
        """Returns GCD of ``a`` and ``b``. """
        return self.one

    def lcm(self, a, b):
        """Returns LCM of ``a`` and ``b``. """
        return a*b

    def almosteq(self, a, b, tolerance=None):
        """Check if ``a`` and ``b`` are almost equal. """
        return self._context.almosteq(a, b, tolerance)


CC = ComplexField()