File size: 6,025 Bytes
ceb378e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""Implementation of :class:`FiniteField` class. """


from sympy.polys.domains.field import Field

from sympy.polys.domains.modularinteger import ModularIntegerFactory
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
from sympy.polys.domains.groundtypes import SymPyInteger

@public
class FiniteField(Field, SimpleDomain):
    r"""Finite field of prime order :ref:`GF(p)`

    A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime
    order as :py:class:`~.Domain` in the domain system (see
    :ref:`polys-domainsintro`).

    A :py:class:`~.Poly` created from an expression with integer
    coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p``
    option is given then the domain will be a finite field instead.

    >>> from sympy import Poly, Symbol
    >>> x = Symbol('x')
    >>> p = Poly(x**2 + 1)
    >>> p
    Poly(x**2 + 1, x, domain='ZZ')
    >>> p.domain
    ZZ
    >>> p2 = Poly(x**2 + 1, modulus=2)
    >>> p2
    Poly(x**2 + 1, x, modulus=2)
    >>> p2.domain
    GF(2)

    It is possible to factorise a polynomial over :ref:`GF(p)` using the
    modulus argument to :py:func:`~.factor` or by specifying the domain
    explicitly. The domain can also be given as a string.

    >>> from sympy import factor, GF
    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, modulus=2)
    (x + 1)**2
    >>> factor(x**2 + 1, domain=GF(2))
    (x + 1)**2
    >>> factor(x**2 + 1, domain='GF(2)')
    (x + 1)**2

    It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel`
    and :py:func:`~.gcd` functions.

    >>> from sympy import cancel, gcd
    >>> cancel((x**2 + 1)/(x + 1))
    (x**2 + 1)/(x + 1)
    >>> cancel((x**2 + 1)/(x + 1), domain=GF(2))
    x + 1
    >>> gcd(x**2 + 1, x + 1)
    1
    >>> gcd(x**2 + 1, x + 1, domain=GF(2))
    x + 1

    When using the domain directly :ref:`GF(p)` can be used as a constructor
    to create instances which then support the operations ``+,-,*,**,/``

    >>> from sympy import GF
    >>> K = GF(5)
    >>> K
    GF(5)
    >>> x = K(3)
    >>> y = K(2)
    >>> x
    3 mod 5
    >>> y
    2 mod 5
    >>> x * y
    1 mod 5
    >>> x / y
    4 mod 5

    Notes
    =====

    It is also possible to create a :ref:`GF(p)` domain of **non-prime**
    order but the resulting ring is **not** a field: it is just the ring of
    the integers modulo ``n``.

    >>> K = GF(9)
    >>> z = K(3)
    >>> z
    3 mod 9
    >>> z**2
    0 mod 9

    It would be good to have a proper implementation of prime power fields
    (``GF(p**n)``) but these are not yet implemented in SymPY.

    .. _finite field: https://en.wikipedia.org/wiki/Finite_field
    """

    rep = 'FF'
    alias = 'FF'

    is_FiniteField = is_FF = True
    is_Numerical = True

    has_assoc_Ring = False
    has_assoc_Field = True

    dom = None
    mod = None

    def __init__(self, mod, symmetric=True):
        from sympy.polys.domains import ZZ
        dom = ZZ

        if mod <= 0:
            raise ValueError('modulus must be a positive integer, got %s' % mod)

        self.dtype = ModularIntegerFactory(mod, dom, symmetric, self)
        self.zero = self.dtype(0)
        self.one = self.dtype(1)
        self.dom = dom
        self.mod = mod

    def __str__(self):
        return 'GF(%s)' % self.mod

    def __hash__(self):
        return hash((self.__class__.__name__, self.dtype, self.mod, self.dom))

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        return isinstance(other, FiniteField) and \
            self.mod == other.mod and self.dom == other.dom

    def characteristic(self):
        """Return the characteristic of this domain. """
        return self.mod

    def get_field(self):
        """Returns a field associated with ``self``. """
        return self

    def to_sympy(self, a):
        """Convert ``a`` to a SymPy object. """
        return SymPyInteger(int(a))

    def from_sympy(self, a):
        """Convert SymPy's Integer to SymPy's ``Integer``. """
        if a.is_Integer:
            return self.dtype(self.dom.dtype(int(a)))
        elif a.is_Float and int(a) == a:
            return self.dtype(self.dom.dtype(int(a)))
        else:
            raise CoercionFailed("expected an integer, got %s" % a)

    def from_FF(K1, a, K0=None):
        """Convert ``ModularInteger(int)`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ(a.val, K0.dom))

    def from_FF_python(K1, a, K0=None):
        """Convert ``ModularInteger(int)`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom))

    def from_ZZ(K1, a, K0=None):
        """Convert Python's ``int`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ_python(a, K0))

    def from_ZZ_python(K1, a, K0=None):
        """Convert Python's ``int`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ_python(a, K0))

    def from_QQ(K1, a, K0=None):
        """Convert Python's ``Fraction`` to ``dtype``. """
        if a.denominator == 1:
            return K1.from_ZZ_python(a.numerator)

    def from_QQ_python(K1, a, K0=None):
        """Convert Python's ``Fraction`` to ``dtype``. """
        if a.denominator == 1:
            return K1.from_ZZ_python(a.numerator)

    def from_FF_gmpy(K1, a, K0=None):
        """Convert ``ModularInteger(mpz)`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom))

    def from_ZZ_gmpy(K1, a, K0=None):
        """Convert GMPY's ``mpz`` to ``dtype``. """
        return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0))

    def from_QQ_gmpy(K1, a, K0=None):
        """Convert GMPY's ``mpq`` to ``dtype``. """
        if a.denominator == 1:
            return K1.from_ZZ_gmpy(a.numerator)

    def from_RealField(K1, a, K0):
        """Convert mpmath's ``mpf`` to ``dtype``. """
        p, q = K0.to_rational(a)

        if q == 1:
            return K1.dtype(K1.dom.dtype(p))


FF = GF = FiniteField