File size: 5,945 Bytes
ceb378e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Implementation of :class:`FractionField` class. """


from sympy.polys.domains.compositedomain import CompositeDomain
from sympy.polys.domains.field import Field
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError
from sympy.utilities import public

@public
class FractionField(Field, CompositeDomain):
    """A class for representing multivariate rational function fields. """

    is_FractionField = is_Frac = True

    has_assoc_Ring = True
    has_assoc_Field = True

    def __init__(self, domain_or_field, symbols=None, order=None):
        from sympy.polys.fields import FracField

        if isinstance(domain_or_field, FracField) and symbols is None and order is None:
            field = domain_or_field
        else:
            field = FracField(symbols, domain_or_field, order)

        self.field = field
        self.dtype = field.dtype

        self.gens = field.gens
        self.ngens = field.ngens
        self.symbols = field.symbols
        self.domain = field.domain

        # TODO: remove this
        self.dom = self.domain

    def new(self, element):
        return self.field.field_new(element)

    @property
    def zero(self):
        return self.field.zero

    @property
    def one(self):
        return self.field.one

    @property
    def order(self):
        return self.field.order

    @property
    def is_Exact(self):
        return self.domain.is_Exact

    def get_exact(self):
        return FractionField(self.domain.get_exact(), self.symbols)

    def __str__(self):
        return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')'

    def __hash__(self):
        return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols))

    def __eq__(self, other):
        """Returns ``True`` if two domains are equivalent. """
        return isinstance(other, FractionField) and \
            (self.dtype.field, self.domain, self.symbols) ==\
            (other.dtype.field, other.domain, other.symbols)

    def to_sympy(self, a):
        """Convert ``a`` to a SymPy object. """
        return a.as_expr()

    def from_sympy(self, a):
        """Convert SymPy's expression to ``dtype``. """
        return self.field.from_expr(a)

    def from_ZZ(K1, a, K0):
        """Convert a Python ``int`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_ZZ_python(K1, a, K0):
        """Convert a Python ``int`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_QQ(K1, a, K0):
        """Convert a Python ``Fraction`` object to ``dtype``. """
        dom = K1.domain
        conv = dom.convert_from
        if dom.is_ZZ:
            return K1(conv(K0.numer(a), K0)) / K1(conv(K0.denom(a), K0))
        else:
            return K1(conv(a, K0))

    def from_QQ_python(K1, a, K0):
        """Convert a Python ``Fraction`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_ZZ_gmpy(K1, a, K0):
        """Convert a GMPY ``mpz`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_QQ_gmpy(K1, a, K0):
        """Convert a GMPY ``mpq`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_GaussianRationalField(K1, a, K0):
        """Convert a ``GaussianRational`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_GaussianIntegerRing(K1, a, K0):
        """Convert a ``GaussianInteger`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_RealField(K1, a, K0):
        """Convert a mpmath ``mpf`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_ComplexField(K1, a, K0):
        """Convert a mpmath ``mpf`` object to ``dtype``. """
        return K1(K1.domain.convert(a, K0))

    def from_AlgebraicField(K1, a, K0):
        """Convert an algebraic number to ``dtype``. """
        if K1.domain != K0:
            a = K1.domain.convert_from(a, K0)
        if a is not None:
            return K1.new(a)

    def from_PolynomialRing(K1, a, K0):
        """Convert a polynomial to ``dtype``. """
        if a.is_ground:
            return K1.convert_from(a.coeff(1), K0.domain)
        try:
            return K1.new(a.set_ring(K1.field.ring))
        except (CoercionFailed, GeneratorsError):
            # XXX: We get here if K1=ZZ(x,y) and K0=QQ[x,y]
            # and the poly a in K0 has non-integer coefficients.
            # It seems that K1.new can handle this but K1.new doesn't work
            # when K0.domain is an algebraic field...
            try:
                return K1.new(a)
            except (CoercionFailed, GeneratorsError):
                return None

    def from_FractionField(K1, a, K0):
        """Convert a rational function to ``dtype``. """
        try:
            return a.set_field(K1.field)
        except (CoercionFailed, GeneratorsError):
            return None

    def get_ring(self):
        """Returns a field associated with ``self``. """
        return self.field.to_ring().to_domain()

    def is_positive(self, a):
        """Returns True if ``LC(a)`` is positive. """
        return self.domain.is_positive(a.numer.LC)

    def is_negative(self, a):
        """Returns True if ``LC(a)`` is negative. """
        return self.domain.is_negative(a.numer.LC)

    def is_nonpositive(self, a):
        """Returns True if ``LC(a)`` is non-positive. """
        return self.domain.is_nonpositive(a.numer.LC)

    def is_nonnegative(self, a):
        """Returns True if ``LC(a)`` is non-negative. """
        return self.domain.is_nonnegative(a.numer.LC)

    def numer(self, a):
        """Returns numerator of ``a``. """
        return a.numer

    def denom(self, a):
        """Returns denominator of ``a``. """
        return a.denom

    def factorial(self, a):
        """Returns factorial of ``a``. """
        return self.dtype(self.domain.factorial(a))