File size: 3,782 Bytes
ceb378e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Implementation of :class:`RealField` class. """


from sympy.core.numbers import Float
from sympy.polys.domains.field import Field
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public

@public
class RealField(Field, CharacteristicZero, SimpleDomain):
    """Real numbers up to the given precision. """

    rep = 'RR'

    is_RealField = is_RR = True

    is_Exact = False
    is_Numerical = True
    is_PID = False

    has_assoc_Ring = False
    has_assoc_Field = True

    _default_precision = 53

    @property
    def has_default_precision(self):
        return self.precision == self._default_precision

    @property
    def precision(self):
        return self._context.prec

    @property
    def dps(self):
        return self._context.dps

    @property
    def tolerance(self):
        return self._context.tolerance

    def __init__(self, prec=_default_precision, dps=None, tol=None):
        context = MPContext(prec, dps, tol, True)
        context._parent = self
        self._context = context

        self.dtype = context.mpf
        self.zero = self.dtype(0)
        self.one = self.dtype(1)

    def __eq__(self, other):
        return (isinstance(other, RealField)
           and self.precision == other.precision
           and self.tolerance == other.tolerance)

    def __hash__(self):
        return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))

    def to_sympy(self, element):
        """Convert ``element`` to SymPy number. """
        return Float(element, self.dps)

    def from_sympy(self, expr):
        """Convert SymPy's number to ``dtype``. """
        number = expr.evalf(n=self.dps)

        if number.is_Number:
            return self.dtype(number)
        else:
            raise CoercionFailed("expected real number, got %s" % expr)

    def from_ZZ(self, element, base):
        return self.dtype(element)

    def from_ZZ_python(self, element, base):
        return self.dtype(element)

    def from_QQ(self, element, base):
        return self.dtype(element.numerator) / element.denominator

    def from_QQ_python(self, element, base):
        return self.dtype(element.numerator) / element.denominator

    def from_ZZ_gmpy(self, element, base):
        return self.dtype(int(element))

    def from_QQ_gmpy(self, element, base):
        return self.dtype(int(element.numerator)) / int(element.denominator)

    def from_AlgebraicField(self, element, base):
        return self.from_sympy(base.to_sympy(element).evalf(self.dps))

    def from_RealField(self, element, base):
        if self == base:
            return element
        else:
            return self.dtype(element)

    def from_ComplexField(self, element, base):
        if not element.imag:
            return self.dtype(element.real)

    def to_rational(self, element, limit=True):
        """Convert a real number to rational number. """
        return self._context.to_rational(element, limit)

    def get_ring(self):
        """Returns a ring associated with ``self``. """
        return self

    def get_exact(self):
        """Returns an exact domain associated with ``self``. """
        from sympy.polys.domains import QQ
        return QQ

    def gcd(self, a, b):
        """Returns GCD of ``a`` and ``b``. """
        return self.one

    def lcm(self, a, b):
        """Returns LCM of ``a`` and ``b``. """
        return a*b

    def almosteq(self, a, b, tolerance=None):
        """Check if ``a`` and ``b`` are almost equal. """
        return self._context.almosteq(a, b, tolerance)


RR = RealField()