File size: 6,648 Bytes
b33c150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import importlib
import os
import platform
from pathlib import Path
from packaging import version
from .utils.logging import get_logger
logger = get_logger(__name__)
# Metrics
S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics"
CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric"
REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/metrics/{path}/{name}"
REPO_MEASUREMENTS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/measurements/{path}/{name}"
REPO_COMPARISONS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/comparisons/{path}/{name}"
# Evaluation module types
EVALUATION_MODULE_TYPES = ["metric", "comparison", "measurement"]
# Hub
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
HF_LIST_ENDPOINT = HF_ENDPOINT + "/api/spaces?filter={type}"
HUB_EVALUATE_URL = HF_ENDPOINT + "/spaces/{path}/resolve/{revision}/{name}"
HUB_DEFAULT_VERSION = "main"
PY_VERSION = version.parse(platform.python_version())
if PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
# General environment variables accepted values for booleans
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
# Imports
PANDAS_VERSION = version.parse(importlib_metadata.version("pandas"))
PYARROW_VERSION = version.parse(importlib_metadata.version("pyarrow"))
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper()
TORCH_VERSION = "N/A"
TORCH_AVAILABLE = False
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None
if TORCH_AVAILABLE:
try:
TORCH_VERSION = version.parse(importlib_metadata.version("torch"))
logger.info(f"PyTorch version {TORCH_VERSION} available.")
except importlib_metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling PyTorch because USE_TF is set")
TF_VERSION = "N/A"
TF_AVAILABLE = False
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None
if TF_AVAILABLE:
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for package in [
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"tensorflow-rocm",
"tensorflow-macos",
]:
try:
TF_VERSION = version.parse(importlib_metadata.version(package))
except importlib_metadata.PackageNotFoundError:
continue
else:
break
else:
TF_AVAILABLE = False
if TF_AVAILABLE:
if TF_VERSION.major < 2:
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.")
TF_AVAILABLE = False
else:
logger.info(f"TensorFlow version {TF_VERSION} available.")
else:
logger.info("Disabling Tensorflow because USE_TORCH is set")
JAX_VERSION = "N/A"
JAX_AVAILABLE = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None
if JAX_AVAILABLE:
try:
JAX_VERSION = version.parse(importlib_metadata.version("jax"))
logger.info(f"JAX version {JAX_VERSION} available.")
except importlib_metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling JAX because USE_JAX is set to False")
# Cache location
DEFAULT_XDG_CACHE_HOME = "~/.cache"
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
DEFAULT_HF_EVALUATE_CACHE = os.path.join(HF_CACHE_HOME, "evaluate")
HF_EVALUATE_CACHE = Path(os.getenv("HF_EVALUATE_CACHE", DEFAULT_HF_EVALUATE_CACHE))
DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics")
HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE))
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules")
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE))
DOWNLOADED_DATASETS_DIR = "downloads"
DEFAULT_DOWNLOADED_EVALUATE_PATH = os.path.join(HF_EVALUATE_CACHE, DOWNLOADED_DATASETS_DIR)
DOWNLOADED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_EVALUATE_PATH", DEFAULT_DOWNLOADED_EVALUATE_PATH))
EXTRACTED_EVALUATE_DIR = "extracted"
DEFAULT_EXTRACTED_EVALUATE_PATH = os.path.join(DEFAULT_DOWNLOADED_EVALUATE_PATH, EXTRACTED_EVALUATE_DIR)
EXTRACTED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_EVALUATE_PATH", DEFAULT_EXTRACTED_EVALUATE_PATH))
# Download count for the website
HF_UPDATE_DOWNLOAD_COUNTS = (
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES
)
# Offline mode
HF_EVALUATE_OFFLINE = os.environ.get("HF_EVALUATE_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES
# File names
LICENSE_FILENAME = "LICENSE"
METRIC_INFO_FILENAME = "metric_info.json"
DATASETDICT_JSON_FILENAME = "dataset_dict.json"
MODULE_NAME_FOR_DYNAMIC_MODULES = "evaluate_modules"
HF_HUB_ALLOWED_TASKS = [
"image-classification",
"translation",
"image-segmentation",
"fill-mask",
"automatic-speech-recognition",
"token-classification",
"sentence-similarity",
"audio-classification",
"question-answering",
"summarization",
"zero-shot-classification",
"table-to-text",
"feature-extraction",
"other",
"multiple-choice",
"text-classification",
"text-to-image",
"text2text-generation",
"zero-shot-image-classification",
"tabular-classification",
"tabular-regression",
"image-to-image",
"tabular-to-text",
"unconditional-image-generation",
"text-retrieval",
"text-to-speech",
"object-detection",
"audio-to-audio",
"text-generation",
"conversational",
"table-question-answering",
"visual-question-answering",
"image-to-text",
"reinforcement-learning",
"voice-activity-detection",
"time-series-forecasting",
"document-question-answering",
]
|