File size: 23,144 Bytes
8397dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import itertools
import logging
import random
import time
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union

import numpy as np
import torch

import lm_eval.api.metrics
import lm_eval.api.registry
import lm_eval.models
from lm_eval.caching.cache import delete_cache
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
from lm_eval.logging_utils import add_env_info, get_git_commit_hash
from lm_eval.tasks import TaskManager, get_task_dict
from lm_eval.utils import eval_logger, positional_deprecated, simple_parse_args_string


if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task


@positional_deprecated
def simple_evaluate(
    model,
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
    limit: Optional[Union[int, float]] = None,
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
    verbosity: str = "INFO",
    predict_only: bool = False,
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
):
    """Instantiate and evaluate a model on a list of tasks.

    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, dict, Task]]
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int or str, optional
        Batch size for model
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
    :param device: str, optional
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
    :param write_out: bool
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.

    :return
        Dictionary of results
    """
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
    start_date = time.time()

    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

    seed_message = []
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
        seed_message.append(f"Setting random seed to {random_seed}")
        random.seed(random_seed)

    if numpy_random_seed is not None:
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
        torch.manual_seed(torch_random_seed)

    if seed_message:
        eval_logger.info(" | ".join(seed_message))

    if tasks is None:
        tasks = []
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )

    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
        eval_logger.warning(
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
        )
        if gen_kwargs == "":
            gen_kwargs = None

    if isinstance(model, str):
        if model_args is None:
            eval_logger.warning("model_args not specified. Using defaults.")
            model_args = ""
        if "pretrained" not in model_args and model in [
            "hf-auto",
            "hf",
            "huggingface",
            "vllm",
        ]:
            eval_logger.warning(
                "pretrained not specified. Using default pretrained=gpt2."
            )

        if isinstance(model_args, dict):
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
    else:
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
        eval_logger.info("Using pre-initialized model")
        lm = model

    if use_cache is not None:
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank"
            + str(lm.rank)
            + ".db",
        )

    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
    for task_name in task_dict.keys():
        task_obj = task_dict[task_name]
        if isinstance(task_obj, tuple):
            _, task_obj = task_obj
            if task_obj is None:
                continue

        if task_obj.get_config("output_type") == "generate_until":
            if gen_kwargs is not None:
                task_obj.set_config(
                    key="generation_kwargs", value=gen_kwargs, update=True
                )

        if predict_only:
            log_samples = True
            eval_logger.info(
                f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
            )
            # we have to change the class properties post-hoc. This is pretty hacky.
            task_obj.override_metric(metric_name="bypass")

        # override tasks' fewshot values to the provided num_fewshot arg value
        # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
        if num_fewshot is not None:
            if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                eval_logger.info(
                    f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                )
            else:
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )
                task_obj.set_config(key="num_fewshot", value=num_fewshot)
        else:
            # if num_fewshot not provided, and the task does not define a default one, default to 0
            if (default_num_fewshot := task_obj.get_config("num_fewshot")) is None:
                task_obj.set_config(key="num_fewshot", value=0)

    if check_integrity:
        run_task_tests(task_list=tasks)

    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
        bootstrap_iters=bootstrap_iters,
        write_out=write_out,
        log_samples=log_samples,
        verbosity=verbosity,
    )

    if lm.rank == 0:
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

        # add info about the model and few shot config
        results["config"] = {
            "model": model_name,
            "model_args": model_args,
            "batch_size": batch_size,
            "batch_sizes": (
                list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
            ),
            "device": device,
            "use_cache": use_cache,
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
            "gen_kwargs": gen_kwargs,
        }
        results["git_hash"] = get_git_commit_hash()
        results["date"] = start_date
        add_env_info(results)  # additional environment info to results
        return results
    else:
        return None


@positional_deprecated
def evaluate(
    lm: "LM",
    task_dict,
    limit: Optional[int] = None,
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    bootstrap_iters: Optional[int] = 100000,
    write_out: bool = False,
    log_samples: bool = True,
    verbosity: str = "INFO",
):
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :param write_out: bool
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
    :return
        Dictionary of results
    """

    eval_logger.setLevel(getattr(logging, f"{verbosity}"))

    # tracks all Instances/requests a model must generate output on.
    requests = defaultdict(list)
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
    padding_requests = defaultdict(int)

    # get lists of group hierarchy and each type of request
    task_hierarchy, eval_tasks = get_task_list(task_dict)
    if not log_samples:
        if not all(
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
        )
        eval_logger.debug(
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            print_writeout(task)
        # aggregate Instances by LM method requested to get output.
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)

        if lm.world_size > 1:
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
            numpad = max(gathered_item) - gathered_item[lm.rank]
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad

    ### Run LM on inputs, get all outputs ###
    # execute each type of request
    for reqtype, reqs in requests.items():
        eval_logger.info(f"Running {reqtype} requests")
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)

        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
                cloned_reqs.extend([req] * req.repeats)

        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()

    RANK = lm.rank
    WORLD_SIZE = lm.world_size
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_output in eval_tasks:
        task = task_output.task
        task.apply_filters()

        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
        # TODO: make it possible to use a different metric per filter
        # Pre-process task.instances to group by doc_id
        instances_by_doc_id = defaultdict(list)
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
        # iterate over different filters used
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
            )
            for doc_id, doc in doc_iterator:
                requests = instances_by_doc_id[doc_id]
                metrics = task.process_results(
                    doc, [req.filtered_resps[filter_key] for req in requests]
                )
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
                    }
                    example.update(metrics)
                    task_output.logged_samples.append(example)
                for metric, value in metrics.items():
                    task_output.sample_metrics[(metric, filter_key)].append(value)

    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
        # first gather logged samples across all ranks
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE
                torch.distributed.all_gather_object(
                    obj=task_output.logged_samples,
                    object_list=full_samples,
                )

                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )

            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE 
                torch.distributed.all_gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_list=metric_list,
                )
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )

    if RANK == 0:
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
        results, samples, configs, versions, num_fewshot = consolidate_results(
            eval_tasks
        )

        ### Calculate group metrics ###
        if bool(results):
            for group, task_list in reversed(task_hierarchy.items()):
                if len(task_list) == 0:
                    # task_hierarchy entries are either
                    # `group_name: [subtask1, subtask2, ...]`
                    # or `task_name: []`.
                    # we only want to operate on groups here.
                    continue
                metric_list = list(
                    {
                        key
                        for task in task_list
                        for key in results[task].keys()
                        if "_stderr" not in key and key not in ["alias", "samples"]
                    }
                )
                for metric in metric_list:
                    stderr = "_stderr,".join(metric.split(","))

                    # gather metrics, sizes, and stderrs from subtasks
                    metrics = [
                        results[task][metric]
                        for task in task_list
                        if metric in results[task]
                    ]  # TODO: copy?
                    stderrs = [
                        results[task][stderr]
                        for task in task_list
                        if stderr in results[task]
                    ]
                    sizes = [
                        results[task]["samples"]
                        for task in task_list
                        if metric in results[task]
                    ]

                    # compute group's pooled metric and stderr
                    results[group][
                        metric
                    ] = lm_eval.api.metrics.aggregate_subtask_metrics(metrics, sizes)
                    # TODO: calculate grouped metric using aggregation fn
                    if "N/A" in stderrs:
                        results[group][stderr] = "N/A"
                    else:
                        results[group][
                            stderr
                        ] = lm_eval.api.metrics.pooled_sample_stderr(stderrs, sizes)
                        # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                        # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                        # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)

                    results[group]["samples"] = sum(sizes)

        results_agg = defaultdict(dict)
        groups_agg = defaultdict(dict)
        all_tasks_list = list(task_hierarchy.keys())
        while True:
            add_tasks_list = list(k for k in results_agg.keys())
            left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list)))
            if len(left_tasks_list) == 0:
                break

            _task_hierarchy = {
                k: v for k, v in task_hierarchy.items() if k in left_tasks_list
            }
            _results_agg, _groups_agg = prepare_print_tasks(_task_hierarchy, results)

            results_agg = {**results_agg, **_results_agg}
            groups_agg = {**groups_agg, **_groups_agg}

        for group_name, task_list in task_hierarchy.items():
            if task_list:
                num_fewshot[group_name] = num_fewshot[
                    task_list[0]
                ]  # TODO: validate this

        results_dict = {
            "results": dict(results_agg.items()),
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
            "group_subtasks": dict(reversed(task_hierarchy.items())),
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
            "n-shot": dict(sorted(num_fewshot.items())),
        }
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict

    else:
        return None


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
    }

    return request_caching_args