File size: 17,000 Bytes
8397dcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import copy
import json
import logging
import os
import re
import subprocess
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

import numpy as np
import pandas as pd
from packaging.version import Version
from torch.utils.collect_env import get_pretty_env_info
from transformers import __version__ as trans_version


logger = logging.getLogger(__name__)


def remove_none_pattern(input_string: str) -> Tuple[str, bool]:
    """Remove the ',none' substring from the input_string if it exists at the end.

    Args:
        input_string (str): The input string from which to remove the ',none' substring.

    Returns:
        Tuple[str, bool]: A tuple containing the modified input_string with the ',none' substring removed
                          and a boolean indicating whether the modification was made (True) or not (False).
    """
    # Define the pattern to match ',none' at the end of the string
    pattern = re.compile(r",none$")

    # Use sub() to replace ',none' with an empty string
    result = re.sub(pattern, "", input_string)

    # check if the input_string changed
    removed = result != input_string

    return result, removed


def _handle_non_serializable(o: Any) -> Union[int, str, list]:
    """Handle non-serializable objects by converting them to serializable types.

    Args:
        o (Any): The object to be handled.

    Returns:
        Union[int, str, list]: The converted object. If the object is of type np.int64 or np.int32,
            it will be converted to int. If the object is of type set, it will be converted
            to a list. Otherwise, it will be converted to str.
    """
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


def get_wandb_printer() -> Literal["Printer"]:
    """Returns a wandb printer instance for pretty stdout."""
    from wandb.sdk.lib.printer import get_printer
    from wandb.sdk.wandb_settings import Settings

    printer = get_printer(Settings()._jupyter)
    return printer


class WandbLogger:
    def __init__(self, **kwargs) -> None:
        """Attaches to wandb logger if already initialized. Otherwise, passes kwargs to wandb.init()

        Args:
            kwargs Optional[Any]: Arguments for configuration.

        Parse and log the results returned from evaluator.simple_evaluate() with:
            wandb_logger.post_init(results)
            wandb_logger.log_eval_result()
            wandb_logger.log_eval_samples(results["samples"])
        """
        try:
            import wandb

            assert Version(wandb.__version__) >= Version("0.13.6")
            if Version(wandb.__version__) < Version("0.13.6"):
                wandb.require("report-editing:v0")
        except Exception as e:
            logger.warning(
                "To use the wandb reporting functionality please install wandb>=0.13.6.\n"
                "To install the latest version of wandb run `pip install wandb --upgrade`\n"
                f"{e}"
            )

        self.wandb_args: Dict[str, Any] = kwargs

        # initialize a W&B run
        if wandb.run is None:
            self.run = wandb.init(**self.wandb_args)
        else:
            self.run = wandb.run

        self.printer = get_wandb_printer()

    def post_init(self, results: Dict[str, Any]) -> None:
        self.results: Dict[str, Any] = copy.deepcopy(results)
        self.task_names: List[str] = list(results.get("results", {}).keys())
        self.group_names: List[str] = list(results.get("groups", {}).keys())

    def _get_config(self) -> Dict[str, Any]:
        """Get configuration parameters."""
        self.task_configs = self.results.get("configs", {})
        cli_configs = self.results.get("config", {})
        configs = {
            "task_configs": self.task_configs,
            "cli_configs": cli_configs,
        }

        return configs

    def _sanitize_results_dict(self) -> Tuple[Dict[str, str], Dict[str, Any]]:
        """Sanitize the results dictionary."""
        _results = copy.deepcopy(self.results.get("results", dict()))

        # Remove None from the metric string name
        tmp_results = copy.deepcopy(_results)
        for task_name in self.task_names:
            task_result = tmp_results.get(task_name, dict())
            for metric_name, metric_value in task_result.items():
                _metric_name, removed = remove_none_pattern(metric_name)
                if removed:
                    _results[task_name][_metric_name] = metric_value
                    _results[task_name].pop(metric_name)

        # remove string valued keys from the results dict
        wandb_summary = {}
        for task in self.task_names:
            task_result = _results.get(task, dict())
            for metric_name, metric_value in task_result.items():
                if isinstance(metric_value, str):
                    wandb_summary[f"{task}/{metric_name}"] = metric_value

        for summary_metric, summary_value in wandb_summary.items():
            _task, _summary_metric = summary_metric.split("/")
            _results[_task].pop(_summary_metric)

        tmp_results = copy.deepcopy(_results)
        for task_name, task_results in tmp_results.items():
            for metric_name, metric_value in task_results.items():
                _results[f"{task_name}/{metric_name}"] = metric_value
                _results[task_name].pop(metric_name)
        for task in self.task_names:
            _results.pop(task)

        return wandb_summary, _results

    def _log_results_as_table(self) -> None:
        """Generate and log evaluation results as a table to W&B."""
        columns = [
            "Version",
            "Filter",
            "num_fewshot",
            "Metric",
            "Value",
            "Stderr",
        ]

        def make_table(columns: List[str], key: str = "results"):
            import wandb

            table = wandb.Table(columns=columns)
            results = copy.deepcopy(self.results)

            for k, dic in results.get(key).items():
                if k in self.group_names and not key == "groups":
                    continue
                version = results.get("versions").get(k)
                if version == "N/A":
                    version = None
                n = results.get("n-shot").get(k)

                for (mf), v in dic.items():
                    m, _, f = mf.partition(",")
                    if m.endswith("_stderr"):
                        continue
                    if m == "alias":
                        continue

                    if m + "_stderr" + "," + f in dic:
                        se = dic[m + "_stderr" + "," + f]
                        if se != "N/A":
                            se = "%.4f" % se
                        table.add_data(*[k, version, f, n, m, str(v), str(se)])
                    else:
                        table.add_data(*[k, version, f, n, m, str(v), ""])

            return table

        # log the complete eval result to W&B Table
        table = make_table(["Tasks"] + columns, "results")
        self.run.log({"evaluation/eval_results": table})

        if "groups" in self.results.keys():
            table = make_table(["Groups"] + columns, "groups")
            self.run.log({"evaluation/group_eval_results": table})

    def _log_results_as_artifact(self) -> None:
        """Log results as JSON artifact to W&B."""
        import wandb

        dumped = json.dumps(
            self.results, indent=2, default=_handle_non_serializable, ensure_ascii=False
        )
        artifact = wandb.Artifact("results", type="eval_results")
        with artifact.new_file("results.json", mode="w", encoding="utf-8") as f:
            f.write(dumped)
        self.run.log_artifact(artifact)

    def log_eval_result(self) -> None:
        """Log evaluation results to W&B."""
        # Log configs to wandb
        configs = self._get_config()
        self.run.config.update(configs)

        wandb_summary, self.wandb_results = self._sanitize_results_dict()
        # update wandb.run.summary with items that were removed
        self.run.summary.update(wandb_summary)
        # Log the evaluation metrics to wandb
        self.run.log(self.wandb_results)
        # Log the evaluation metrics as W&B Table
        self._log_results_as_table()
        # Log the results dict as json to W&B Artifacts
        self._log_results_as_artifact()

    def _generate_dataset(
        self, data: List[Dict[str, Any]], config: Dict[str, Any]
    ) -> pd.DataFrame:
        """Generate a dataset from evaluation data.

        Args:
            data (List[Dict[str, Any]]): The data to generate a dataset for.
            config (Dict[str, Any]): The configuration of the task.

        Returns:
            pd.DataFrame: A dataframe that is ready to be uploaded to W&B.
        """
        ids = [x["doc_id"] for x in data]
        labels = [x["target"] for x in data]
        instance = [""] * len(ids)
        resps = [""] * len(ids)
        filtered_resps = [""] * len(ids)
        model_outputs = {}

        metrics_list = config["metric_list"]
        metrics = {}
        for metric in metrics_list:
            metric = metric.get("metric")
            if metric in ["word_perplexity", "byte_perplexity", "bits_per_byte"]:
                metrics[f"{metric}_loglikelihood"] = [x[metric][0] for x in data]
                if metric in ["byte_perplexity", "bits_per_byte"]:
                    metrics[f"{metric}_bytes"] = [x[metric][1] for x in data]
                else:
                    metrics[f"{metric}_words"] = [x[metric][1] for x in data]
            else:
                metrics[metric] = [x[metric] for x in data]

        if config["output_type"] == "loglikelihood":
            instance = [x["arguments"][0][0] for x in data]
            labels = [x["arguments"][0][1] for x in data]
            resps = [
                f'log probability of continuation is {x["resps"][0][0][0]} '
                + "\n\n"
                + "continuation will {} generated with greedy sampling".format(
                    "not be" if not x["resps"][0][0][1] else "be"
                )
                for x in data
            ]
            filtered_resps = [
                f'log probability of continuation is {x["filtered_resps"][0][0]} '
                + "\n\n"
                + "continuation will {} generated with greedy sampling".format(
                    "not be" if not x["filtered_resps"][0][1] else "be"
                )
                for x in data
            ]
        elif config["output_type"] == "multiple_choice":
            instance = [x["arguments"][0][0] for x in data]
            choices = [
                "\n".join([f"{idx}. {y[1]}" for idx, y in enumerate(x["arguments"])])
                for x in data
            ]
            resps = [np.argmax([n[0][0] for n in x["resps"]]) for x in data]
            filtered_resps = [
                np.argmax([n[0] for n in x["filtered_resps"]]) for x in data
            ]
        elif config["output_type"] == "loglikelihood_rolling":
            instance = [x["arguments"][0][0] for x in data]
            resps = [x["resps"][0][0] for x in data]
            filtered_resps = [x["filtered_resps"][0] for x in data]
        elif config["output_type"] == "generate_until":
            instance = [x["arguments"][0][0] for x in data]
            resps = [x["resps"][0][0] for x in data]
            filtered_resps = [x["filtered_resps"][0] for x in data]

        model_outputs["raw_predictions"] = resps
        model_outputs["filtered_predictions"] = filtered_resps

        df_data = {
            "id": ids,
            "data": instance,
        }
        if config["output_type"] == "multiple_choice":
            df_data["choices"] = choices

        tmp_data = {
            "input_len": [len(x) for x in instance],
            "labels": labels,
            "output_type": config["output_type"],
        }
        df_data.update(tmp_data)
        df_data.update(model_outputs)
        df_data.update(metrics)

        return pd.DataFrame(df_data)

    def _log_samples_as_artifact(
        self, data: List[Dict[str, Any]], task_name: str
    ) -> None:
        import wandb

        # log the samples as an artifact
        dumped = json.dumps(
            data,
            indent=2,
            default=_handle_non_serializable,
            ensure_ascii=False,
        )
        artifact = wandb.Artifact(f"{task_name}", type="samples_by_task")
        with artifact.new_file(
            f"{task_name}_eval_samples.json", mode="w", encoding="utf-8"
        ) as f:
            f.write(dumped)
        self.run.log_artifact(artifact)
        # artifact.wait()

    def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None:
        """Log evaluation samples to W&B.

        Args:
            samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task.
        """
        task_names: List[str] = [
            x for x in self.task_names if x not in self.group_names
        ]

        ungrouped_tasks = []
        tasks_by_groups = {}

        for task_name in task_names:
            group_names = self.task_configs[task_name].get("group", None)
            if group_names:
                if isinstance(group_names, str):
                    group_names = [group_names]

                for group_name in group_names:
                    if not tasks_by_groups.get(group_name):
                        tasks_by_groups[group_name] = [task_name]
                    else:
                        tasks_by_groups[group_name].append(task_name)
            else:
                ungrouped_tasks.append(task_name)

        for task_name in ungrouped_tasks:
            eval_preds = samples[task_name]

            # log the samples as a W&B Table
            df = self._generate_dataset(eval_preds, self.task_configs.get(task_name))
            self.run.log({f"{task_name}_eval_results": df})

            # log the samples as a json file as W&B Artifact
            self._log_samples_as_artifact(eval_preds, task_name)

        for group, grouped_tasks in tasks_by_groups.items():
            grouped_df = pd.DataFrame()
            for task_name in grouped_tasks:
                eval_preds = samples[task_name]
                df = self._generate_dataset(
                    eval_preds, self.task_configs.get(task_name)
                )
                df["group"] = group
                df["task"] = task_name
                grouped_df = pd.concat([grouped_df, df], ignore_index=True)

                # log the samples as a json file as W&B Artifact
                self._log_samples_as_artifact(eval_preds, task_name)

            self.run.log({f"{group}_eval_results": grouped_df})


def get_commit_from_path(repo_path: Union[Path, str]) -> Optional[str]:
    try:
        git_folder = Path(repo_path, ".git")
        if git_folder.is_file():
            git_folder = Path(
                git_folder.parent,
                git_folder.read_text(encoding="utf-8").split("\n")[0].split(" ")[-1],
            )
        if Path(git_folder, "HEAD").exists():
            head_name = (
                Path(git_folder, "HEAD")
                .read_text(encoding="utf-8")
                .split("\n")[0]
                .split(" ")[-1]
            )
            head_ref = Path(git_folder, head_name)
            git_hash = head_ref.read_text(encoding="utf-8").replace("\n", "")
        else:
            git_hash = None
    except Exception as err:
        logger.debug(
            f"Failed to retrieve a Git commit hash from path: {str(repo_path)}. Error: {err}"
        )
        return None
    return git_hash


def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except (subprocess.CalledProcessError, FileNotFoundError):
        # FileNotFoundError occurs when git not installed on system
        git_hash = get_commit_from_path(os.getcwd())  # git hash of repo if exists
    return git_hash


def add_env_info(storage: Dict[str, Any]):
    try:
        pretty_env_info = get_pretty_env_info()
    except Exception as err:
        pretty_env_info = str(err)
    transformers_version = trans_version
    upper_dir_commit = get_commit_from_path(
        Path(os.getcwd(), "..")
    )  # git hash of upper repo if exists
    added_info = {
        "pretty_env_info": pretty_env_info,
        "transformers_version": transformers_version,
        "upper_git_hash": upper_dir_commit,  # in case this repo is submodule
    }
    storage.update(added_info)