File size: 14,454 Bytes
c80136c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import argparse
import json
import logging
import os
import re
import sys
from functools import partial
from pathlib import Path
from typing import Union
import numpy as np
from lm_eval import evaluator, utils
from lm_eval.evaluator import request_caching_arg_to_dict
from lm_eval.logging_utils import WandbLogger
from lm_eval.tasks import TaskManager
from lm_eval.utils import make_table, simple_parse_args_string
DEFAULT_RESULTS_FILE = "results.json"
def _handle_non_serializable(o):
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def _int_or_none_list_arg_type(max_len: int, value: str, split_char: str = ","):
def parse_value(item):
item = item.strip().lower()
if item == "none":
return None
try:
return int(item)
except ValueError:
raise argparse.ArgumentTypeError(f"{item} is not an integer or None")
items = [parse_value(v) for v in value.split(split_char)]
num_items = len(items)
if num_items == 1:
# Makes downstream handling the same for single and multiple values
items = items * max_len
elif num_items != max_len:
raise argparse.ArgumentTypeError(
f"Argument requires {max_len} integers or None, separated by '{split_char}'"
)
return items
def check_argument_types(parser: argparse.ArgumentParser):
"""
Check to make sure all CLI args are typed, raises error if not
"""
for action in parser._actions:
if action.dest != "help" and not action.const:
if action.type is None:
raise ValueError(
f"Argument '{action.dest}' doesn't have a type specified."
)
else:
continue
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
)
parser.add_argument(
"--tasks",
"-t",
default=None,
type=str,
metavar="task1,task2",
help="To get full list of tasks, use the command lm-eval --tasks list",
)
parser.add_argument(
"--model_args",
"-a",
default="",
type=str,
help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
"-f",
type=int,
default=None,
metavar="N",
help="Number of examples in few-shot context",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu).",
)
parser.add_argument(
"--output_path",
"-o",
default=None,
type=str,
metavar="DIR|DIR/file.json",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
"-L",
type=float,
default=None,
metavar="N|0<N<1",
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument(
"--cache_requests",
type=str,
default=None,
choices=["true", "refresh", "delete"],
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
)
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks.",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
"-s",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
metavar="DIR",
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
type=str,
default=None,
help=(
"String arguments for model generation on greedy_until tasks,"
" e.g. `temperature=0,top_k=0,top_p=0`."
),
)
parser.add_argument(
"--verbosity",
"-v",
type=str.upper,
default="INFO",
metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG",
help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.",
)
parser.add_argument(
"--wandb_args",
type=str,
default="",
help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval",
)
parser.add_argument(
"--predict_only",
"-x",
action="store_true",
default=False,
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
)
parser.add_argument(
"--seed",
type=partial(_int_or_none_list_arg_type, 3),
default="0,1234,1234", # for backward compatibility
help=(
"Set seed for python's random, numpy and torch.\n"
"Accepts a comma-separated list of 3 values for python's random, numpy, and torch seeds, respectively, "
"or a single integer to set the same seed for all three.\n"
"The values are either an integer or 'None' to not set the seed. Default is `0,1234,1234` (for backward compatibility).\n"
"E.g. `--seed 0,None,8` sets `random.seed(0)` and `torch.manual_seed(8)`. Here numpy's seed is not set since the second value is `None`.\n"
"E.g, `--seed 42` sets all three seeds to 42."
),
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
)
return parser
def parse_eval_args(parser: argparse.ArgumentParser) -> argparse.Namespace:
check_argument_types(parser)
return parser.parse_args()
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
# we allow for args to be passed externally, else we parse them ourselves
parser = setup_parser()
args = parse_eval_args(parser)
if args.wandb_args:
wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args))
eval_logger = utils.eval_logger
eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.predict_only:
args.log_samples = True
if (args.log_samples or args.predict_only) and not args.output_path:
raise ValueError(
"Specify --output_path if providing --log_samples or --predict_only"
)
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
task_manager = TaskManager(args.verbosity, include_path=args.include_path)
if args.limit:
eval_logger.warning(
" --limit SHOULD ONLY BE USED FOR TESTING."
"REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks is None:
eval_logger.error("Need to specify task to evaluate.")
sys.exit()
elif args.tasks == "list":
eval_logger.info(
"Available Tasks:\n - {}".format("\n - ".join(task_manager.all_tasks))
)
sys.exit()
else:
if os.path.isdir(args.tasks):
import glob
task_names = []
yaml_path = os.path.join(args.tasks, "*.yaml")
for yaml_file in glob.glob(yaml_path):
config = utils.load_yaml_config(yaml_file)
task_names.append(config)
else:
task_list = args.tasks.split(",")
task_names = task_manager.match_tasks(task_list)
for task in [task for task in task_list if task not in task_names]:
if os.path.isfile(task):
config = utils.load_yaml_config(task)
task_names.append(config)
task_missing = [
task for task in task_list if task not in task_names and "*" not in task
] # we don't want errors if a wildcard ("*") task name was used
if task_missing:
missing = ", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}\n"
f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raise ValueError(
f"Tasks not found: {missing}. Try `lm-eval --tasks list` for list of available tasks, or '--verbosity DEBUG' to troubleshoot task registration issues."
)
if args.output_path:
path = Path(args.output_path)
# check if file or 'dir/results.json' exists
if path.is_file():
raise FileExistsError(f"File already exists at {path}")
output_path_file = path.joinpath(DEFAULT_RESULTS_FILE)
if output_path_file.is_file():
eval_logger.warning(
f"File {output_path_file} already exists. Results will be overwritten."
)
# if path json then get parent dir
elif path.suffix in (".json", ".jsonl"):
output_path_file = path
path.parent.mkdir(parents=True, exist_ok=True)
path = path.parent
else:
path.mkdir(parents=True, exist_ok=True)
# Respect user's value passed in via CLI, otherwise default to True and add to comma-separated model args
if args.trust_remote_code:
os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = str(args.trust_remote_code)
args.model_args = (
args.model_args
+ f",trust_remote_code={os.environ['HF_DATASETS_TRUST_REMOTE_CODE']}"
)
eval_logger.info(f"Selected Tasks: {task_names}")
request_caching_args = request_caching_arg_to_dict(
cache_requests=args.cache_requests
)
results = evaluator.simple_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
use_cache=args.use_cache,
limit=args.limit,
check_integrity=args.check_integrity,
write_out=args.write_out,
log_samples=args.log_samples,
gen_kwargs=args.gen_kwargs,
task_manager=task_manager,
verbosity=args.verbosity,
predict_only=args.predict_only,
random_seed=args.seed[0],
numpy_random_seed=args.seed[1],
torch_random_seed=args.seed[2],
**request_caching_args,
)
if results is not None:
if args.log_samples:
samples = results.pop("samples")
dumped = json.dumps(
results, indent=2, default=_handle_non_serializable, ensure_ascii=False
)
if args.show_config:
print(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
# Add W&B logging
if args.wandb_args:
try:
wandb_logger.post_init(results)
wandb_logger.log_eval_result()
if args.log_samples:
wandb_logger.log_eval_samples(samples)
except Exception as e:
eval_logger.info(f"Logging to Weights and Biases failed due to {e}")
if args.output_path:
output_path_file.open("w", encoding="utf-8").write(dumped)
if args.log_samples:
for task_name, config in results["configs"].items():
output_name = "{}_{}".format(
re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", args.model_args),
task_name,
)
filename = path.joinpath(f"{output_name}.jsonl")
samples_dumped = json.dumps(
samples[task_name],
indent=2,
default=_handle_non_serializable,
ensure_ascii=False,
)
filename.write_text(samples_dumped, encoding="utf-8")
print(
f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, "
f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
)
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
if args.wandb_args:
# Tear down wandb run once all the logging is done.
wandb_logger.run.finish()
if __name__ == "__main__":
cli_evaluate()
|