File size: 13,150 Bytes
d94d830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import pickle
import re
import string
import traceback
from typing import Iterator, List, Sequence, Tuple, TypeVar


# This is a cpp module. Compile janitor_util.cpp with:
# c++ -O3 -Wall -shared -std=c++11 -fPIC $(python3 -m pybind11 --includes) janitor_util.cpp -o janitor_util$(python3-config --extension-suffix) -undefined dynamic_lookup
try:
    import janitor_util

    JANITOR_CPP = True
except Exception:
    print("WARNING: C++ module could not be loaded. Janitor running in python mode")
    traceback.print_exc()
    JANITOR_CPP = False

T = TypeVar("T")


# Implementation from nltk source
# https://www.nltk.org/_modules/nltk/util.html
def form_ngrams(sequence: Iterator[T], n: int) -> Iterator[Tuple[T, ...]]:
    history = []
    while n > 1:
        # PEP 479, prevent RuntimeError from being raised when StopIteration bubbles out of generator
        try:
            next_item = next(sequence)
        except StopIteration:
            # no more data, terminate the generator
            return
        history.append(next_item)
        n -= 1
    for item in sequence:
        history.append(item)
        yield tuple(history)
        del history[0]


def word_ngrams(s: str, n: int) -> Iterator[str]:
    """Splits a string into ngram words"""
    tokens = s.split()  # not a generator :(
    ngram_seqs = form_ngrams(iter(tokens), n)
    return (" ".join(ngram) for ngram in ngram_seqs)


# Does character sequences only - combined faster function to play around with later
# def word_ngrams_indices_combined(sequence, n):
#     current_word = ""
#     history = []
#     gap = False;
#     start = 0
#     end = 0
#     for character in sequence:
#         if character == " ":
#             if not gap:
#                 gap = True
#                 history.append(current_word)
#                 end += len(current_word) - 1
#                 current_word = ""
#                 if len(history) == n:
#                     yield (tuple(history), start, end)
#                     del history[0]
#                     start = end + 1
#                     end = start
#         else:
#             gap = False
#             current_word += character


# https://stackoverflow.com/questions/13734451/string-split-with-indices-in-python
def split_indices(s: str) -> Iterator[Tuple[str, Tuple[int, int]]]:
    """Splits a string on whitespaces and records the indices of each in the original string.
    @:return generator((word, (start_idx, end_idx)), ...)
    """
    return ((m.group(0), (m.start(), m.end() - 1)) for m in re.finditer(r"\S+", s))


def word_ngrams_indices(s: str, n: int) -> Iterator[Tuple[str, Tuple[int, int]]]:
    """Splits a string into pairs of (ngram words, their start/end indices)"""
    tokens_with_indices = split_indices(s)

    # Generator of ngrams of (word, idx_pairs)
    # (
    #   [(word, (start,end)), (word, (start, end))...],
    #   [(word, (start, end)), ...],
    #   ...
    # )
    ngram_seqs_with_indices = form_ngrams(tokens_with_indices, n)

    # Generator of pairs of word and index ngrams
    # (
    #   ([word, word, ...], [(start,end), (start,end), ...]),
    #   ...
    # )
    ngram_indices_pairs = (
        zip(*ngram_with_indices) for ngram_with_indices in ngram_seqs_with_indices
    )

    # Generator of ( (word_ngram, (start, end)), (word_ngram, start, end)), ...)
    return (
        (" ".join(ngram_seq), (indices[0][0], indices[-1][1]))
        for ngram_seq, indices in ngram_indices_pairs
    )


class Janitor:
    # FIXME delete_chars: Should anything else go here? Special chars?
    def __init__(
        self,
        ngram_n: int = 13,
        window_to_remove: int = 200,
        too_dirty_cutoff: int = 10,
        minimum_slice_length: int = 200,
        delete_chars: str = string.punctuation,
    ) -> None:
        self.ngram_n = ngram_n
        self.window_to_remove = window_to_remove
        self.too_dirty_cutoff = too_dirty_cutoff
        self.minimum_slice_length = minimum_slice_length
        self.delete_chars = delete_chars

        self.dirt_ngrams = set()

        # If in python, we'll translate uppercase to lowercase and delete naughty characters.
        # This is fast by python standards
        # https://stackoverflow.com/questions/638893/what-is-the-most-efficient-way-in-python-to-convert-a-string-to-all-lowercase-st
        self.translation_table = str.maketrans(
            string.ascii_lowercase + string.ascii_uppercase,  # These characters
            string.ascii_lowercase * 2,  # Become these characters
            self.delete_chars,  # These are deleted
        )

    ##############
    # I/O for saving contamination ngrams
    ##############

    def save_contamination_ngrams(self, filename: str) -> None:
        with open(filename, "wb") as fp:
            pickle.dump(filename, fp)

    def load_contamination_ngrams(self, filename: str) -> None:
        with open(filename, "rb") as fp:
            self.dirt_ngrams = pickle.load(fp)

    ##############
    # Call these :)
    ##############

    def register_contaminant(self, dirt_string: str) -> None:
        """Register a string as contamination to be removed, e.g. a test set
        This breaks the dirt_string into ngrams to store for future cleaning"""
        if JANITOR_CPP:
            return self.register_contaminant_cpp(dirt_string)
        else:
            print("WARNING: Janitor running in python mode")
            return self.register_contaminant_python(dirt_string)

    def clean(self, dirty_string: str) -> List[str]:
        """Clean a string (e.g. a training set) by removing all ngrams previously
        registered as contaminants. Returns a list of clean chunks, or empty if
        the string was too dirty"""
        if JANITOR_CPP:
            return self.clean_cpp(dirty_string)
        else:
            print("WARNING: Janitor running in python mode")
            return self.clean_python(dirty_string)

    def _split_chunks(
        self, dirty_string: str, dirty_parts: Sequence[Tuple]
    ) -> List[str]:
        clean_chunks = []
        splice_idx = 0
        end = -1
        for i, (ngram, start, end) in enumerate(dirty_parts):
            if i >= self.too_dirty_cutoff:
                return []
            start = max(0, start - self.window_to_remove)
            end = min(len(dirty_string), end + self.window_to_remove)

            if start - splice_idx > self.minimum_slice_length:
                clean_chunks.append(dirty_string[splice_idx:start])
            splice_idx = end

        if end < len(dirty_string) - self.minimum_slice_length:
            clean_chunks.append(dirty_string[end + 1 :])

        return clean_chunks

    ##############
    # Fast C++
    ##############

    def register_contaminant_cpp(self, dirt_string) -> None:
        self.dirt_ngrams.update(
            janitor_util.clean_ngram(dirt_string, self.delete_chars, self.ngram_n)
        )

    def clean_cpp(self, dirty_string: str) -> List[str]:
        contamination_indices = janitor_util.clean_ngram_with_indices(
            dirty_string, self.delete_chars, self.ngram_n
        )
        return self._split_chunks(dirty_string, contamination_indices)

    ##############
    # Slow python
    ##############

    def normalize_string(self, s: str) -> str:
        return s.translate(self.translation_table)

    def register_contaminant_python(self, dirt_string: str) -> None:
        self.dirt_ngrams.update(
            word_ngrams(self.normalize_string(dirt_string), self.ngram_n)
        )

    def clean_python(self, dirty_string: str) -> List[str]:
        contamination_indices = (
            (None, *idx_pair)
            for dirty_ngram, idx_pair in word_ngrams_indices(dirty_string, self.ngram_n)
            if self.normalize_string(dirty_ngram) in self.dirt_ngrams
        )
        return self._split_chunks(dirty_string, contamination_indices)


##################################################################
# Tests
#################################################################

# def print_cpp():
#     source = """   ,, I'm a very !dirty,, ,,  dirty boy. Clean me daddy. \n\nhe he he hehe heh.  lastword  """ * 2

#     for i in range(1, 10, 2):
#         pprint(janitor_util.clean_ngram(source, string.punctuation, i))
#         for ngram, start, end in \
#                 janitor_util.clean_ngram_with_indices(source, string.punctuation, i):
#             print(ngram, "\t", start, end, source[start:end].replace("\n", "\\n"))


# def test_cpp():
#     source = """   ,, I'm a very !dirty,, ,,  dirty boy. Clean me daddy. \n\nhe he he hehe heh.  lastword  """ * 2
#     contaminant = "dirty boy. Clean he he"

#     jan_python = Janitor()
#     jan_cpp = Janitor()

#     jan_python.register_contaminant_python(contaminant)
#     jan_cpp.register_contaminant(contaminant)

#     assert jan_python.dirt_ngrams == jan_cpp.dirt_ngrams, (jan_python.dirt_ngrams, jan_cpp.dirt_ngrams)

#     assert jan_python.clean_python(source) == jan_cpp.clean(source), \
#         (jan_python.clean_python(source), jan_cpp.clean(source))

#     print("Passed test, python==cpp")


# def benchmark():
#     # Download and put in data folder: enwik8 (100 MB) from https://cs.fit.edu/~mmahoney/compression/textdata.html
#     setup = \
#         """
#         with open("data/enwik8", "r") as f:
#             data = f.read()
#         jan = Janitor(too_dirty_cutoff=1000)
#         jan.register_contaminant('''
#         theories is that there is a connection between &quot;geekdom&quot; and autism.
#         This is hinted, for instance, by a ''Wired Magazine'' article in 2001 entitled &quot;
#         The [[Geek]] Syndrome&quot;, which is a point argued by many in the autism rights
#         movement{{ref|Wired}}.  This article, many professionals assert, is just one example of
#         the media's application of mental disease labels to what is actually variant normal behavior
#         &amp;mdash;they argue that shyness, lack of athletic ability or social skills, and intellectual
#         interests, even when they seem unusual to others, are not in themselves signs of autism or
#         Asperger's syndrome. Others assert that it is actually the medical profession which is applying
#         mental disease labels to children who in the past would have simply been accepted as a little
#         different or even labeled 'gifted'. See [[clinomorphism]] for further discussion of this issue.
#         Due to the recent publicity surrounding autism and autis
#         ultan Al Nahyan]] granted [[Petroleum]] concessions, and oil was first found in 1958.  At first,
#         oil money had a marginal impact.  A few lowrise concete buildings were erected, and the first
#         paved road was completed in 1961, but Sheikh Shakbut, uncertain whether the new oil royalties
#         would last, took a cautious approach, preferring to save the revenue rather than investing it in
#         development.  His brother, [[Zayed bin Sultan Al Nahayan]], saw that oil wealth had the potential
#         to transform Abu Dhabi.  The ruling Al Nahayan family decided that Sheikh Zayed should replace his
#         brother as Ruler and carry out his vision of developing the country.  On [[August 6]], [[1966]],
#         with the assistance of the British, Sheikh Zayed became the new ruler.  See generally, Al-Fahim, M,
#         ''From Rags to Riches: A Story of Abu Dhabi'', Chapter Six (London Centre of Arab Studies, 1995),
#         ISBN 1 900404 00 1. With the announcement by Britain in 1968 that it would withdraw from the
#         Gulf area by 1971, Sheikh Zayed became the main driving force behind the formation of the
#         [[United Arab Emirates]]. After the Emirates gained independence in 1971,
#         ''')
#         """

#     n = 1
#     print(f"Timing {n} run on 100 MB")
#     print("Register contaminant")
#     # print("\tPython", timeit.timeit("jan.register_contaminant_python(data)", setup=setup, globals=globals(), number=n))
#     print("\tCpp", timeit.timeit("jan.register_contaminant(data)", setup=setup, globals=globals(), number=n))

#     print("Clean")
#     # print("\tPython", timeit.timeit("jan.clean_python(data)", setup=setup, globals=globals(), number=n))
#     print("\tCpp", timeit.timeit("jan.clean(data)", setup=setup, globals=globals(), number=n))


# def test_janitor_general():
#     source = """   ,, I'm a very !dirty,, ,,  dirty boy. Clean me daddy. \n\nhe he he hehe heh.  lastword  """ * 2
#     contaminant = "dirty boy. Clean he he"

#     jan = Janitor(ngram_n=3)
#     jan.register_contaminant(contaminant)
#     cleaned = " ".join(jan.clean(source))
#     for contam in jan.dirt_ngrams:
#         assert contam not in cleaned, contam

#     filename = "data/saved_contam"
#     jan.save_contamination_ngrams(filename)

#     jan = Janitor(ngram_n=3)
#     jan.load_contamination_ngrams(filename)
#     cleaned = " ".join(jan.clean(source))
#     for contam in jan.dirt_ngrams:
#         assert contam not in cleaned, contam


# if __name__ == "__main__":
#     test()
#     # print_cpp()
#     # test_cpp()
#     # benchmark()