peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/sklearn
/utils
/_mocking.py
import numpy as np | |
from ..base import BaseEstimator, ClassifierMixin | |
from ..utils._metadata_requests import RequestMethod | |
from .metaestimators import available_if | |
from .validation import _check_sample_weight, _num_samples, check_array, check_is_fitted | |
class ArraySlicingWrapper: | |
""" | |
Parameters | |
---------- | |
array | |
""" | |
def __init__(self, array): | |
self.array = array | |
def __getitem__(self, aslice): | |
return MockDataFrame(self.array[aslice]) | |
class MockDataFrame: | |
""" | |
Parameters | |
---------- | |
array | |
""" | |
# have shape and length but don't support indexing. | |
def __init__(self, array): | |
self.array = array | |
self.values = array | |
self.shape = array.shape | |
self.ndim = array.ndim | |
# ugly hack to make iloc work. | |
self.iloc = ArraySlicingWrapper(array) | |
def __len__(self): | |
return len(self.array) | |
def __array__(self, dtype=None): | |
# Pandas data frames also are array-like: we want to make sure that | |
# input validation in cross-validation does not try to call that | |
# method. | |
return self.array | |
def __eq__(self, other): | |
return MockDataFrame(self.array == other.array) | |
def __ne__(self, other): | |
return not self == other | |
def take(self, indices, axis=0): | |
return MockDataFrame(self.array.take(indices, axis=axis)) | |
class CheckingClassifier(ClassifierMixin, BaseEstimator): | |
"""Dummy classifier to test pipelining and meta-estimators. | |
Checks some property of `X` and `y`in fit / predict. | |
This allows testing whether pipelines / cross-validation or metaestimators | |
changed the input. | |
Can also be used to check if `fit_params` are passed correctly, and | |
to force a certain score to be returned. | |
Parameters | |
---------- | |
check_y, check_X : callable, default=None | |
The callable used to validate `X` and `y`. These callable should return | |
a bool where `False` will trigger an `AssertionError`. If `None`, the | |
data is not validated. Default is `None`. | |
check_y_params, check_X_params : dict, default=None | |
The optional parameters to pass to `check_X` and `check_y`. If `None`, | |
then no parameters are passed in. | |
methods_to_check : "all" or list of str, default="all" | |
The methods in which the checks should be applied. By default, | |
all checks will be done on all methods (`fit`, `predict`, | |
`predict_proba`, `decision_function` and `score`). | |
foo_param : int, default=0 | |
A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1 | |
otherwise it is 0. | |
expected_sample_weight : bool, default=False | |
Whether to check if a valid `sample_weight` was passed to `fit`. | |
expected_fit_params : list of str, default=None | |
A list of the expected parameters given when calling `fit`. | |
Attributes | |
---------- | |
classes_ : int | |
The classes seen during `fit`. | |
n_features_in_ : int | |
The number of features seen during `fit`. | |
Examples | |
-------- | |
>>> from sklearn.utils._mocking import CheckingClassifier | |
This helper allow to assert to specificities regarding `X` or `y`. In this | |
case we expect `check_X` or `check_y` to return a boolean. | |
>>> from sklearn.datasets import load_iris | |
>>> X, y = load_iris(return_X_y=True) | |
>>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4)) | |
>>> clf.fit(X, y) | |
CheckingClassifier(...) | |
We can also provide a check which might raise an error. In this case, we | |
expect `check_X` to return `X` and `check_y` to return `y`. | |
>>> from sklearn.utils import check_array | |
>>> clf = CheckingClassifier(check_X=check_array) | |
>>> clf.fit(X, y) | |
CheckingClassifier(...) | |
""" | |
def __init__( | |
self, | |
*, | |
check_y=None, | |
check_y_params=None, | |
check_X=None, | |
check_X_params=None, | |
methods_to_check="all", | |
foo_param=0, | |
expected_sample_weight=None, | |
expected_fit_params=None, | |
): | |
self.check_y = check_y | |
self.check_y_params = check_y_params | |
self.check_X = check_X | |
self.check_X_params = check_X_params | |
self.methods_to_check = methods_to_check | |
self.foo_param = foo_param | |
self.expected_sample_weight = expected_sample_weight | |
self.expected_fit_params = expected_fit_params | |
def _check_X_y(self, X, y=None, should_be_fitted=True): | |
"""Validate X and y and make extra check. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The data set. | |
`X` is checked only if `check_X` is not `None` (default is None). | |
y : array-like of shape (n_samples), default=None | |
The corresponding target, by default `None`. | |
`y` is checked only if `check_y` is not `None` (default is None). | |
should_be_fitted : bool, default=True | |
Whether or not the classifier should be already fitted. | |
By default True. | |
Returns | |
------- | |
X, y | |
""" | |
if should_be_fitted: | |
check_is_fitted(self) | |
if self.check_X is not None: | |
params = {} if self.check_X_params is None else self.check_X_params | |
checked_X = self.check_X(X, **params) | |
if isinstance(checked_X, (bool, np.bool_)): | |
assert checked_X | |
else: | |
X = checked_X | |
if y is not None and self.check_y is not None: | |
params = {} if self.check_y_params is None else self.check_y_params | |
checked_y = self.check_y(y, **params) | |
if isinstance(checked_y, (bool, np.bool_)): | |
assert checked_y | |
else: | |
y = checked_y | |
return X, y | |
def fit(self, X, y, sample_weight=None, **fit_params): | |
"""Fit classifier. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : array-like of shape (n_samples, n_outputs) or (n_samples,), \ | |
default=None | |
Target relative to X for classification or regression; | |
None for unsupervised learning. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If None, then samples are equally weighted. | |
**fit_params : dict of string -> object | |
Parameters passed to the ``fit`` method of the estimator | |
Returns | |
------- | |
self | |
""" | |
assert _num_samples(X) == _num_samples(y) | |
if self.methods_to_check == "all" or "fit" in self.methods_to_check: | |
X, y = self._check_X_y(X, y, should_be_fitted=False) | |
self.n_features_in_ = np.shape(X)[1] | |
self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True)) | |
if self.expected_fit_params: | |
missing = set(self.expected_fit_params) - set(fit_params) | |
if missing: | |
raise AssertionError( | |
f"Expected fit parameter(s) {list(missing)} not seen." | |
) | |
for key, value in fit_params.items(): | |
if _num_samples(value) != _num_samples(X): | |
raise AssertionError( | |
f"Fit parameter {key} has length {_num_samples(value)}" | |
f"; expected {_num_samples(X)}." | |
) | |
if self.expected_sample_weight: | |
if sample_weight is None: | |
raise AssertionError("Expected sample_weight to be passed") | |
_check_sample_weight(sample_weight, X) | |
return self | |
def predict(self, X): | |
"""Predict the first class seen in `classes_`. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
preds : ndarray of shape (n_samples,) | |
Predictions of the first class seens in `classes_`. | |
""" | |
if self.methods_to_check == "all" or "predict" in self.methods_to_check: | |
X, y = self._check_X_y(X) | |
return self.classes_[np.zeros(_num_samples(X), dtype=int)] | |
def predict_proba(self, X): | |
"""Predict probabilities for each class. | |
Here, the dummy classifier will provide a probability of 1 for the | |
first class of `classes_` and 0 otherwise. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
proba : ndarray of shape (n_samples, n_classes) | |
The probabilities for each sample and class. | |
""" | |
if self.methods_to_check == "all" or "predict_proba" in self.methods_to_check: | |
X, y = self._check_X_y(X) | |
proba = np.zeros((_num_samples(X), len(self.classes_))) | |
proba[:, 0] = 1 | |
return proba | |
def decision_function(self, X): | |
"""Confidence score. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
decision : ndarray of shape (n_samples,) if n_classes == 2\ | |
else (n_samples, n_classes) | |
Confidence score. | |
""" | |
if ( | |
self.methods_to_check == "all" | |
or "decision_function" in self.methods_to_check | |
): | |
X, y = self._check_X_y(X) | |
if len(self.classes_) == 2: | |
# for binary classifier, the confidence score is related to | |
# classes_[1] and therefore should be null. | |
return np.zeros(_num_samples(X)) | |
else: | |
decision = np.zeros((_num_samples(X), len(self.classes_))) | |
decision[:, 0] = 1 | |
return decision | |
def score(self, X=None, Y=None): | |
"""Fake score. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
Y : array-like of shape (n_samples, n_output) or (n_samples,) | |
Target relative to X for classification or regression; | |
None for unsupervised learning. | |
Returns | |
------- | |
score : float | |
Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 => | |
score=1` otherwise `score=0`). | |
""" | |
if self.methods_to_check == "all" or "score" in self.methods_to_check: | |
self._check_X_y(X, Y) | |
if self.foo_param > 1: | |
score = 1.0 | |
else: | |
score = 0.0 | |
return score | |
def _more_tags(self): | |
return {"_skip_test": True, "X_types": ["1dlabel"]} | |
# Deactivate key validation for CheckingClassifier because we want to be able to | |
# call fit with arbitrary fit_params and record them. Without this change, we | |
# would get an error because those arbitrary params are not expected. | |
CheckingClassifier.set_fit_request = RequestMethod( # type: ignore | |
name="fit", keys=[], validate_keys=False | |
) | |
class NoSampleWeightWrapper(BaseEstimator): | |
"""Wrap estimator which will not expose `sample_weight`. | |
Parameters | |
---------- | |
est : estimator, default=None | |
The estimator to wrap. | |
""" | |
def __init__(self, est=None): | |
self.est = est | |
def fit(self, X, y): | |
return self.est.fit(X, y) | |
def predict(self, X): | |
return self.est.predict(X) | |
def predict_proba(self, X): | |
return self.est.predict_proba(X) | |
def _more_tags(self): | |
return {"_skip_test": True} | |
def _check_response(method): | |
def check(self): | |
return self.response_methods is not None and method in self.response_methods | |
return check | |
class _MockEstimatorOnOffPrediction(BaseEstimator): | |
"""Estimator for which we can turn on/off the prediction methods. | |
Parameters | |
---------- | |
response_methods: list of \ | |
{"predict", "predict_proba", "decision_function"}, default=None | |
List containing the response implemented by the estimator. When, the | |
response is in the list, it will return the name of the response method | |
when called. Otherwise, an `AttributeError` is raised. It allows to | |
use `getattr` as any conventional estimator. By default, no response | |
methods are mocked. | |
""" | |
def __init__(self, response_methods=None): | |
self.response_methods = response_methods | |
def fit(self, X, y): | |
self.classes_ = np.unique(y) | |
return self | |
def predict(self, X): | |
return "predict" | |
def predict_proba(self, X): | |
return "predict_proba" | |
def decision_function(self, X): | |
return "decision_function" | |