peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/sklearn
/utils
/_response.py
"""Utilities to get the response values of a classifier or a regressor. | |
It allows to make uniform checks and validation. | |
""" | |
import numpy as np | |
from ..base import is_classifier | |
from .multiclass import type_of_target | |
from .validation import _check_response_method, check_is_fitted | |
def _process_predict_proba(*, y_pred, target_type, classes, pos_label): | |
"""Get the response values when the response method is `predict_proba`. | |
This function process the `y_pred` array in the binary and multi-label cases. | |
In the binary case, it selects the column corresponding to the positive | |
class. In the multi-label case, it stacks the predictions if they are not | |
in the "compressed" format `(n_samples, n_outputs)`. | |
Parameters | |
---------- | |
y_pred : ndarray | |
Output of `estimator.predict_proba`. The shape depends on the target type: | |
- for binary classification, it is a 2d array of shape `(n_samples, 2)`; | |
- for multiclass classification, it is a 2d array of shape | |
`(n_samples, n_classes)`; | |
- for multilabel classification, it is either a list of 2d arrays of shape | |
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or | |
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or | |
`RidgeClassifier`). | |
target_type : {"binary", "multiclass", "multilabel-indicator"} | |
Type of the target. | |
classes : ndarray of shape (n_classes,) or list of such arrays | |
Class labels as reported by `estimator.classes_`. | |
pos_label : int, float, bool or str | |
Only used with binary and multiclass targets. | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \ | |
(n_samples, n_output) | |
Compressed predictions format as requested by the metrics. | |
""" | |
if target_type == "binary" and y_pred.shape[1] < 2: | |
# We don't handle classifiers trained on a single class. | |
raise ValueError( | |
f"Got predict_proba of shape {y_pred.shape}, but need " | |
"classifier with two classes." | |
) | |
if target_type == "binary": | |
col_idx = np.flatnonzero(classes == pos_label)[0] | |
return y_pred[:, col_idx] | |
elif target_type == "multilabel-indicator": | |
# Use a compress format of shape `(n_samples, n_output)`. | |
# Only `MLPClassifier` and `RidgeClassifier` return an array of shape | |
# `(n_samples, n_outputs)`. | |
if isinstance(y_pred, list): | |
# list of arrays of shape `(n_samples, 2)` | |
return np.vstack([p[:, -1] for p in y_pred]).T | |
else: | |
# array of shape `(n_samples, n_outputs)` | |
return y_pred | |
return y_pred | |
def _process_decision_function(*, y_pred, target_type, classes, pos_label): | |
"""Get the response values when the response method is `decision_function`. | |
This function process the `y_pred` array in the binary and multi-label cases. | |
In the binary case, it inverts the sign of the score if the positive label | |
is not `classes[1]`. In the multi-label case, it stacks the predictions if | |
they are not in the "compressed" format `(n_samples, n_outputs)`. | |
Parameters | |
---------- | |
y_pred : ndarray | |
Output of `estimator.predict_proba`. The shape depends on the target type: | |
- for binary classification, it is a 1d array of shape `(n_samples,)` where the | |
sign is assuming that `classes[1]` is the positive class; | |
- for multiclass classification, it is a 2d array of shape | |
`(n_samples, n_classes)`; | |
- for multilabel classification, it is a 2d array of shape `(n_samples, | |
n_outputs)`. | |
target_type : {"binary", "multiclass", "multilabel-indicator"} | |
Type of the target. | |
classes : ndarray of shape (n_classes,) or list of such arrays | |
Class labels as reported by `estimator.classes_`. | |
pos_label : int, float, bool or str | |
Only used with binary and multiclass targets. | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \ | |
(n_samples, n_output) | |
Compressed predictions format as requested by the metrics. | |
""" | |
if target_type == "binary" and pos_label == classes[0]: | |
return -1 * y_pred | |
return y_pred | |
def _get_response_values( | |
estimator, | |
X, | |
response_method, | |
pos_label=None, | |
return_response_method_used=False, | |
): | |
"""Compute the response values of a classifier, an outlier detector, or a regressor. | |
The response values are predictions such that it follows the following shape: | |
- for binary classification, it is a 1d array of shape `(n_samples,)`; | |
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`; | |
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`; | |
- for outlier detection, it is a 1d array of shape `(n_samples,)`; | |
- for regression, it is a 1d array of shape `(n_samples,)`. | |
If `estimator` is a binary classifier, also return the label for the | |
effective positive class. | |
This utility is used primarily in the displays and the scikit-learn scorers. | |
.. versionadded:: 1.3 | |
Parameters | |
---------- | |
estimator : estimator instance | |
Fitted classifier, outlier detector, or regressor or a | |
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a | |
classifier, an outlier detector, or a regressor. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input values. | |
response_method : {"predict_proba", "predict_log_proba", "decision_function", \ | |
"predict"} or list of such str | |
Specifies the response method to use get prediction from an estimator | |
(i.e. :term:`predict_proba`, :term:`predict_log_proba`, | |
:term:`decision_function` or :term:`predict`). Possible choices are: | |
- if `str`, it corresponds to the name to the method to return; | |
- if a list of `str`, it provides the method names in order of | |
preference. The method returned corresponds to the first method in | |
the list and which is implemented by `estimator`. | |
pos_label : int, float, bool or str, default=None | |
The class considered as the positive class when computing | |
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is | |
considered as the positive class. | |
return_response_method_used : bool, default=False | |
Whether to return the response method used to compute the response | |
values. | |
.. versionadded:: 1.4 | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \ | |
(n_samples, n_outputs) | |
Target scores calculated from the provided `response_method` | |
and `pos_label`. | |
pos_label : int, float, bool, str or None | |
The class considered as the positive class when computing | |
the metrics. Returns `None` if `estimator` is a regressor or an outlier | |
detector. | |
response_method_used : str | |
The response method used to compute the response values. Only returned | |
if `return_response_method_used` is `True`. | |
.. versionadded:: 1.4 | |
Raises | |
------ | |
ValueError | |
If `pos_label` is not a valid label. | |
If the shape of `y_pred` is not consistent for binary classifier. | |
If the response method can be applied to a classifier only and | |
`estimator` is a regressor. | |
""" | |
from sklearn.base import is_classifier, is_outlier_detector # noqa | |
if is_classifier(estimator): | |
prediction_method = _check_response_method(estimator, response_method) | |
classes = estimator.classes_ | |
target_type = type_of_target(classes) | |
if target_type in ("binary", "multiclass"): | |
if pos_label is not None and pos_label not in classes.tolist(): | |
raise ValueError( | |
f"pos_label={pos_label} is not a valid label: It should be " | |
f"one of {classes}" | |
) | |
elif pos_label is None and target_type == "binary": | |
pos_label = classes[-1] | |
y_pred = prediction_method(X) | |
if prediction_method.__name__ in ("predict_proba", "predict_log_proba"): | |
y_pred = _process_predict_proba( | |
y_pred=y_pred, | |
target_type=target_type, | |
classes=classes, | |
pos_label=pos_label, | |
) | |
elif prediction_method.__name__ == "decision_function": | |
y_pred = _process_decision_function( | |
y_pred=y_pred, | |
target_type=target_type, | |
classes=classes, | |
pos_label=pos_label, | |
) | |
elif is_outlier_detector(estimator): | |
prediction_method = _check_response_method(estimator, response_method) | |
y_pred, pos_label = prediction_method(X), None | |
else: # estimator is a regressor | |
if response_method != "predict": | |
raise ValueError( | |
f"{estimator.__class__.__name__} should either be a classifier to be " | |
f"used with response_method={response_method} or the response_method " | |
"should be 'predict'. Got a regressor with response_method=" | |
f"{response_method} instead." | |
) | |
prediction_method = estimator.predict | |
y_pred, pos_label = prediction_method(X), None | |
if return_response_method_used: | |
return y_pred, pos_label, prediction_method.__name__ | |
return y_pred, pos_label | |
def _get_response_values_binary(estimator, X, response_method, pos_label=None): | |
"""Compute the response values of a binary classifier. | |
Parameters | |
---------- | |
estimator : estimator instance | |
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` | |
in which the last estimator is a binary classifier. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input values. | |
response_method : {'auto', 'predict_proba', 'decision_function'} | |
Specifies whether to use :term:`predict_proba` or | |
:term:`decision_function` as the target response. If set to 'auto', | |
:term:`predict_proba` is tried first and if it does not exist | |
:term:`decision_function` is tried next. | |
pos_label : int, float, bool or str, default=None | |
The class considered as the positive class when computing | |
the metrics. By default, `estimators.classes_[1]` is | |
considered as the positive class. | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,) | |
Target scores calculated from the provided response_method | |
and pos_label. | |
pos_label : int, float, bool or str | |
The class considered as the positive class when computing | |
the metrics. | |
""" | |
classification_error = "Expected 'estimator' to be a binary classifier." | |
check_is_fitted(estimator) | |
if not is_classifier(estimator): | |
raise ValueError( | |
classification_error + f" Got {estimator.__class__.__name__} instead." | |
) | |
elif len(estimator.classes_) != 2: | |
raise ValueError( | |
classification_error + f" Got {len(estimator.classes_)} classes instead." | |
) | |
if response_method == "auto": | |
response_method = ["predict_proba", "decision_function"] | |
return _get_response_values( | |
estimator, | |
X, | |
response_method, | |
pos_label=pos_label, | |
) | |