peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/sklearn
/utils
/fixes.py
"""Compatibility fixes for older version of python, numpy and scipy | |
If you add content to this file, please give the version of the package | |
at which the fix is no longer needed. | |
""" | |
# Authors: Emmanuelle Gouillart <[email protected]> | |
# Gael Varoquaux <[email protected]> | |
# Fabian Pedregosa <[email protected]> | |
# Lars Buitinck | |
# | |
# License: BSD 3 clause | |
import numpy as np | |
import scipy | |
import scipy.sparse.linalg | |
import scipy.stats | |
import threadpoolctl | |
import sklearn | |
from ..externals._packaging.version import parse as parse_version | |
from .deprecation import deprecated | |
np_version = parse_version(np.__version__) | |
np_base_version = parse_version(np_version.base_version) | |
sp_version = parse_version(scipy.__version__) | |
sp_base_version = parse_version(sp_version.base_version) | |
# TODO: We can consider removing the containers and importing | |
# directly from SciPy when sparse matrices will be deprecated. | |
CSR_CONTAINERS = [scipy.sparse.csr_matrix] | |
CSC_CONTAINERS = [scipy.sparse.csc_matrix] | |
COO_CONTAINERS = [scipy.sparse.coo_matrix] | |
LIL_CONTAINERS = [scipy.sparse.lil_matrix] | |
DOK_CONTAINERS = [scipy.sparse.dok_matrix] | |
BSR_CONTAINERS = [scipy.sparse.bsr_matrix] | |
DIA_CONTAINERS = [scipy.sparse.dia_matrix] | |
if parse_version(scipy.__version__) >= parse_version("1.8"): | |
# Sparse Arrays have been added in SciPy 1.8 | |
# TODO: When SciPy 1.8 is the minimum supported version, | |
# those list can be created directly without this condition. | |
# See: https://github.com/scikit-learn/scikit-learn/issues/27090 | |
CSR_CONTAINERS.append(scipy.sparse.csr_array) | |
CSC_CONTAINERS.append(scipy.sparse.csc_array) | |
COO_CONTAINERS.append(scipy.sparse.coo_array) | |
LIL_CONTAINERS.append(scipy.sparse.lil_array) | |
DOK_CONTAINERS.append(scipy.sparse.dok_array) | |
BSR_CONTAINERS.append(scipy.sparse.bsr_array) | |
DIA_CONTAINERS.append(scipy.sparse.dia_array) | |
try: | |
from scipy.optimize._linesearch import line_search_wolfe1, line_search_wolfe2 | |
except ImportError: # SciPy < 1.8 | |
from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1 # type: ignore # noqa | |
def _object_dtype_isnan(X): | |
return X != X | |
# Rename the `method` kwarg to `interpolation` for NumPy < 1.22, because | |
# `interpolation` kwarg was deprecated in favor of `method` in NumPy >= 1.22. | |
def _percentile(a, q, *, method="linear", **kwargs): | |
return np.percentile(a, q, interpolation=method, **kwargs) | |
if np_version < parse_version("1.22"): | |
percentile = _percentile | |
else: # >= 1.22 | |
from numpy import percentile # type: ignore # noqa | |
# compatibility fix for threadpoolctl >= 3.0.0 | |
# since version 3 it's possible to setup a global threadpool controller to avoid | |
# looping through all loaded shared libraries each time. | |
# the global controller is created during the first call to threadpoolctl. | |
def _get_threadpool_controller(): | |
if not hasattr(threadpoolctl, "ThreadpoolController"): | |
return None | |
if not hasattr(sklearn, "_sklearn_threadpool_controller"): | |
sklearn._sklearn_threadpool_controller = threadpoolctl.ThreadpoolController() | |
return sklearn._sklearn_threadpool_controller | |
def threadpool_limits(limits=None, user_api=None): | |
controller = _get_threadpool_controller() | |
if controller is not None: | |
return controller.limit(limits=limits, user_api=user_api) | |
else: | |
return threadpoolctl.threadpool_limits(limits=limits, user_api=user_api) | |
threadpool_limits.__doc__ = threadpoolctl.threadpool_limits.__doc__ | |
def threadpool_info(): | |
controller = _get_threadpool_controller() | |
if controller is not None: | |
return controller.info() | |
else: | |
return threadpoolctl.threadpool_info() | |
threadpool_info.__doc__ = threadpoolctl.threadpool_info.__doc__ | |
def delayed(function): | |
from sklearn.utils.parallel import delayed | |
return delayed(function) | |
# TODO: Remove when SciPy 1.11 is the minimum supported version | |
def _mode(a, axis=0): | |
if sp_version >= parse_version("1.9.0"): | |
mode = scipy.stats.mode(a, axis=axis, keepdims=True) | |
if sp_version >= parse_version("1.10.999"): | |
# scipy.stats.mode has changed returned array shape with axis=None | |
# and keepdims=True, see https://github.com/scipy/scipy/pull/17561 | |
if axis is None: | |
mode = np.ravel(mode) | |
return mode | |
return scipy.stats.mode(a, axis=axis) | |
# TODO: Remove when Scipy 1.12 is the minimum supported version | |
if sp_base_version >= parse_version("1.12.0"): | |
_sparse_linalg_cg = scipy.sparse.linalg.cg | |
else: | |
def _sparse_linalg_cg(A, b, **kwargs): | |
if "rtol" in kwargs: | |
kwargs["tol"] = kwargs.pop("rtol") | |
if "atol" not in kwargs: | |
kwargs["atol"] = "legacy" | |
return scipy.sparse.linalg.cg(A, b, **kwargs) | |
# TODO: Fuse the modern implementations of _sparse_min_max and _sparse_nan_min_max | |
# into the public min_max_axis function when Scipy 1.11 is the minimum supported | |
# version and delete the backport in the else branch below. | |
if sp_base_version >= parse_version("1.11.0"): | |
def _sparse_min_max(X, axis): | |
the_min = X.min(axis=axis) | |
the_max = X.max(axis=axis) | |
if axis is not None: | |
the_min = the_min.toarray().ravel() | |
the_max = the_max.toarray().ravel() | |
return the_min, the_max | |
def _sparse_nan_min_max(X, axis): | |
the_min = X.nanmin(axis=axis) | |
the_max = X.nanmax(axis=axis) | |
if axis is not None: | |
the_min = the_min.toarray().ravel() | |
the_max = the_max.toarray().ravel() | |
return the_min, the_max | |
else: | |
# This code is mostly taken from scipy 0.14 and extended to handle nans, see | |
# https://github.com/scikit-learn/scikit-learn/pull/11196 | |
def _minor_reduce(X, ufunc): | |
major_index = np.flatnonzero(np.diff(X.indptr)) | |
# reduceat tries casts X.indptr to intp, which errors | |
# if it is int64 on a 32 bit system. | |
# Reinitializing prevents this where possible, see #13737 | |
X = type(X)((X.data, X.indices, X.indptr), shape=X.shape) | |
value = ufunc.reduceat(X.data, X.indptr[major_index]) | |
return major_index, value | |
def _min_or_max_axis(X, axis, min_or_max): | |
N = X.shape[axis] | |
if N == 0: | |
raise ValueError("zero-size array to reduction operation") | |
M = X.shape[1 - axis] | |
mat = X.tocsc() if axis == 0 else X.tocsr() | |
mat.sum_duplicates() | |
major_index, value = _minor_reduce(mat, min_or_max) | |
not_full = np.diff(mat.indptr)[major_index] < N | |
value[not_full] = min_or_max(value[not_full], 0) | |
mask = value != 0 | |
major_index = np.compress(mask, major_index) | |
value = np.compress(mask, value) | |
if axis == 0: | |
res = scipy.sparse.coo_matrix( | |
(value, (np.zeros(len(value)), major_index)), | |
dtype=X.dtype, | |
shape=(1, M), | |
) | |
else: | |
res = scipy.sparse.coo_matrix( | |
(value, (major_index, np.zeros(len(value)))), | |
dtype=X.dtype, | |
shape=(M, 1), | |
) | |
return res.A.ravel() | |
def _sparse_min_or_max(X, axis, min_or_max): | |
if axis is None: | |
if 0 in X.shape: | |
raise ValueError("zero-size array to reduction operation") | |
zero = X.dtype.type(0) | |
if X.nnz == 0: | |
return zero | |
m = min_or_max.reduce(X.data.ravel()) | |
if X.nnz != np.prod(X.shape): | |
m = min_or_max(zero, m) | |
return m | |
if axis < 0: | |
axis += 2 | |
if (axis == 0) or (axis == 1): | |
return _min_or_max_axis(X, axis, min_or_max) | |
else: | |
raise ValueError("invalid axis, use 0 for rows, or 1 for columns") | |
def _sparse_min_max(X, axis): | |
return ( | |
_sparse_min_or_max(X, axis, np.minimum), | |
_sparse_min_or_max(X, axis, np.maximum), | |
) | |
def _sparse_nan_min_max(X, axis): | |
return ( | |
_sparse_min_or_max(X, axis, np.fmin), | |
_sparse_min_or_max(X, axis, np.fmax), | |
) | |
# For +1.25 NumPy versions exceptions and warnings are being moved | |
# to a dedicated submodule. | |
if np_version >= parse_version("1.25.0"): | |
from numpy.exceptions import ComplexWarning, VisibleDeprecationWarning | |
else: | |
from numpy import ComplexWarning, VisibleDeprecationWarning # type: ignore # noqa | |
# TODO: Remove when Scipy 1.6 is the minimum supported version | |
try: | |
from scipy.integrate import trapezoid # type: ignore # noqa | |
except ImportError: | |
from scipy.integrate import trapz as trapezoid # type: ignore # noqa | |
# TODO: Adapt when Pandas > 2.2 is the minimum supported version | |
def pd_fillna(pd, frame): | |
pd_version = parse_version(pd.__version__).base_version | |
if parse_version(pd_version) < parse_version("2.2"): | |
frame = frame.fillna(value=np.nan) | |
else: | |
infer_objects_kwargs = ( | |
{} if parse_version(pd_version) >= parse_version("3") else {"copy": False} | |
) | |
with pd.option_context("future.no_silent_downcasting", True): | |
frame = frame.fillna(value=np.nan).infer_objects(**infer_objects_kwargs) | |
return frame | |
# TODO: remove when SciPy 1.12 is the minimum supported version | |
def _preserve_dia_indices_dtype( | |
sparse_container, original_container_format, requested_sparse_format | |
): | |
"""Preserve indices dtype for SciPy < 1.12 when converting from DIA to CSR/CSC. | |
For SciPy < 1.12, DIA arrays indices are upcasted to `np.int64` that is | |
inconsistent with DIA matrices. We downcast the indices dtype to `np.int32` to | |
be consistent with DIA matrices. | |
The converted indices arrays are affected back inplace to the sparse container. | |
Parameters | |
---------- | |
sparse_container : sparse container | |
Sparse container to be checked. | |
requested_sparse_format : str or bool | |
The type of format of `sparse_container`. | |
Notes | |
----- | |
See https://github.com/scipy/scipy/issues/19245 for more details. | |
""" | |
if original_container_format == "dia_array" and requested_sparse_format in ( | |
"csr", | |
"coo", | |
): | |
if requested_sparse_format == "csr": | |
index_dtype = _smallest_admissible_index_dtype( | |
arrays=(sparse_container.indptr, sparse_container.indices), | |
maxval=max(sparse_container.nnz, sparse_container.shape[1]), | |
check_contents=True, | |
) | |
sparse_container.indices = sparse_container.indices.astype( | |
index_dtype, copy=False | |
) | |
sparse_container.indptr = sparse_container.indptr.astype( | |
index_dtype, copy=False | |
) | |
else: # requested_sparse_format == "coo" | |
index_dtype = _smallest_admissible_index_dtype( | |
maxval=max(sparse_container.shape) | |
) | |
sparse_container.row = sparse_container.row.astype(index_dtype, copy=False) | |
sparse_container.col = sparse_container.col.astype(index_dtype, copy=False) | |
# TODO: remove when SciPy 1.12 is the minimum supported version | |
def _smallest_admissible_index_dtype(arrays=(), maxval=None, check_contents=False): | |
"""Based on input (integer) arrays `a`, determine a suitable index data | |
type that can hold the data in the arrays. | |
This function returns `np.int64` if it either required by `maxval` or based on the | |
largest precision of the dtype of the arrays passed as argument, or by the their | |
contents (when `check_contents is True`). If none of the condition requires | |
`np.int64` then this function returns `np.int32`. | |
Parameters | |
---------- | |
arrays : ndarray or tuple of ndarrays, default=() | |
Input arrays whose types/contents to check. | |
maxval : float, default=None | |
Maximum value needed. | |
check_contents : bool, default=False | |
Whether to check the values in the arrays and not just their types. | |
By default, check only the types. | |
Returns | |
------- | |
dtype : {np.int32, np.int64} | |
Suitable index data type (int32 or int64). | |
""" | |
int32min = np.int32(np.iinfo(np.int32).min) | |
int32max = np.int32(np.iinfo(np.int32).max) | |
if maxval is not None: | |
if maxval > np.iinfo(np.int64).max: | |
raise ValueError( | |
f"maxval={maxval} is to large to be represented as np.int64." | |
) | |
if maxval > int32max: | |
return np.int64 | |
if isinstance(arrays, np.ndarray): | |
arrays = (arrays,) | |
for arr in arrays: | |
if not isinstance(arr, np.ndarray): | |
raise TypeError( | |
f"Arrays should be of type np.ndarray, got {type(arr)} instead." | |
) | |
if not np.issubdtype(arr.dtype, np.integer): | |
raise ValueError( | |
f"Array dtype {arr.dtype} is not supported for index dtype. We expect " | |
"integral values." | |
) | |
if not np.can_cast(arr.dtype, np.int32): | |
if not check_contents: | |
# when `check_contents` is False, we stay on the safe side and return | |
# np.int64. | |
return np.int64 | |
if arr.size == 0: | |
# a bigger type not needed yet, let's look at the next array | |
continue | |
else: | |
maxval = arr.max() | |
minval = arr.min() | |
if minval < int32min or maxval > int32max: | |
# a big index type is actually needed | |
return np.int64 | |
return np.int32 | |
# TODO: Remove when Scipy 1.12 is the minimum supported version | |
if sp_version < parse_version("1.12"): | |
from ..externals._scipy.sparse.csgraph import laplacian # type: ignore # noqa | |
else: | |
from scipy.sparse.csgraph import laplacian # type: ignore # noqa # pragma: no cover | |