|
""" A sparse matrix in COOrdinate or 'triplet' format""" |
|
|
|
__docformat__ = "restructuredtext en" |
|
|
|
__all__ = ['coo_array', 'coo_matrix', 'isspmatrix_coo'] |
|
|
|
import math |
|
from warnings import warn |
|
|
|
import numpy as np |
|
|
|
from .._lib._util import copy_if_needed |
|
from ._matrix import spmatrix |
|
from ._sparsetools import coo_tocsr, coo_todense, coo_matvec |
|
from ._base import issparse, SparseEfficiencyWarning, _spbase, sparray |
|
from ._data import _data_matrix, _minmax_mixin |
|
from ._sputils import (upcast_char, to_native, isshape, getdtype, |
|
getdata, downcast_intp_index, get_index_dtype, |
|
check_shape, check_reshape_kwargs) |
|
|
|
import operator |
|
|
|
|
|
class _coo_base(_data_matrix, _minmax_mixin): |
|
_format = 'coo' |
|
|
|
def __init__(self, arg1, shape=None, dtype=None, copy=False): |
|
_data_matrix.__init__(self) |
|
is_array = isinstance(self, sparray) |
|
if not copy: |
|
copy = copy_if_needed |
|
|
|
if isinstance(arg1, tuple): |
|
if isshape(arg1, allow_1d=is_array): |
|
self._shape = check_shape(arg1, allow_1d=is_array) |
|
idx_dtype = self._get_index_dtype(maxval=max(self._shape)) |
|
data_dtype = getdtype(dtype, default=float) |
|
self.coords = tuple(np.array([], dtype=idx_dtype) |
|
for _ in range(len(self._shape))) |
|
self.data = np.array([], dtype=data_dtype) |
|
self.has_canonical_format = True |
|
else: |
|
try: |
|
obj, coords = arg1 |
|
except (TypeError, ValueError) as e: |
|
raise TypeError('invalid input format') from e |
|
|
|
if shape is None: |
|
if any(len(idx) == 0 for idx in coords): |
|
raise ValueError('cannot infer dimensions from zero ' |
|
'sized index arrays') |
|
shape = tuple(operator.index(np.max(idx)) + 1 |
|
for idx in coords) |
|
self._shape = check_shape(shape, allow_1d=is_array) |
|
|
|
idx_dtype = self._get_index_dtype(coords, |
|
maxval=max(self.shape), |
|
check_contents=True) |
|
self.coords = tuple(np.array(idx, copy=copy, dtype=idx_dtype) |
|
for idx in coords) |
|
self.data = getdata(obj, copy=copy, dtype=dtype) |
|
self.has_canonical_format = False |
|
else: |
|
if issparse(arg1): |
|
if arg1.format == self.format and copy: |
|
self.coords = tuple(idx.copy() for idx in arg1.coords) |
|
self.data = arg1.data.copy() |
|
self._shape = check_shape(arg1.shape, allow_1d=is_array) |
|
self.has_canonical_format = arg1.has_canonical_format |
|
else: |
|
coo = arg1.tocoo() |
|
self.coords = tuple(coo.coords) |
|
self.data = coo.data |
|
self._shape = check_shape(coo.shape, allow_1d=is_array) |
|
self.has_canonical_format = False |
|
else: |
|
|
|
M = np.asarray(arg1) |
|
if not is_array: |
|
M = np.atleast_2d(M) |
|
if M.ndim != 2: |
|
raise TypeError('expected dimension <= 2 array or matrix') |
|
|
|
self._shape = check_shape(M.shape, allow_1d=is_array) |
|
if shape is not None: |
|
if check_shape(shape, allow_1d=is_array) != self._shape: |
|
message = f'inconsistent shapes: {shape} != {self._shape}' |
|
raise ValueError(message) |
|
index_dtype = self._get_index_dtype(maxval=max(self._shape)) |
|
coords = M.nonzero() |
|
self.coords = tuple(idx.astype(index_dtype, copy=False) |
|
for idx in coords) |
|
self.data = M[coords] |
|
self.has_canonical_format = True |
|
|
|
if dtype is not None: |
|
self.data = self.data.astype(dtype, copy=False) |
|
|
|
self._check() |
|
|
|
@property |
|
def row(self): |
|
if self.ndim > 1: |
|
return self.coords[-2] |
|
result = np.zeros_like(self.col) |
|
result.setflags(write=False) |
|
return result |
|
|
|
|
|
@row.setter |
|
def row(self, new_row): |
|
if self.ndim < 2: |
|
raise ValueError('cannot set row attribute of a 1-dimensional sparse array') |
|
new_row = np.asarray(new_row, dtype=self.coords[-2].dtype) |
|
self.coords = self.coords[:-2] + (new_row,) + self.coords[-1:] |
|
|
|
@property |
|
def col(self): |
|
return self.coords[-1] |
|
|
|
@col.setter |
|
def col(self, new_col): |
|
new_col = np.asarray(new_col, dtype=self.coords[-1].dtype) |
|
self.coords = self.coords[:-1] + (new_col,) |
|
|
|
def reshape(self, *args, **kwargs): |
|
is_array = isinstance(self, sparray) |
|
shape = check_shape(args, self.shape, allow_1d=is_array) |
|
order, copy = check_reshape_kwargs(kwargs) |
|
|
|
|
|
if shape == self.shape: |
|
if copy: |
|
return self.copy() |
|
else: |
|
return self |
|
|
|
|
|
|
|
|
|
flat_coords = _ravel_coords(self.coords, self.shape, order=order) |
|
if len(shape) == 2: |
|
if order == 'C': |
|
new_coords = divmod(flat_coords, shape[1]) |
|
else: |
|
new_coords = divmod(flat_coords, shape[0])[::-1] |
|
else: |
|
new_coords = np.unravel_index(flat_coords, shape, order=order) |
|
|
|
|
|
|
|
if copy: |
|
new_data = self.data.copy() |
|
else: |
|
new_data = self.data |
|
|
|
return self.__class__((new_data, new_coords), shape=shape, copy=False) |
|
|
|
reshape.__doc__ = _spbase.reshape.__doc__ |
|
|
|
def _getnnz(self, axis=None): |
|
if axis is None or (axis == 0 and self.ndim == 1): |
|
nnz = len(self.data) |
|
if any(len(idx) != nnz for idx in self.coords): |
|
raise ValueError('all index and data arrays must have the ' |
|
'same length') |
|
|
|
if self.data.ndim != 1 or any(idx.ndim != 1 for idx in self.coords): |
|
raise ValueError('row, column, and data arrays must be 1-D') |
|
|
|
return int(nnz) |
|
|
|
if axis < 0: |
|
axis += self.ndim |
|
if axis >= self.ndim: |
|
raise ValueError('axis out of bounds') |
|
if self.ndim > 2: |
|
raise NotImplementedError('per-axis nnz for COO arrays with >2 ' |
|
'dimensions is not supported') |
|
return np.bincount(downcast_intp_index(self.coords[1 - axis]), |
|
minlength=self.shape[1 - axis]) |
|
|
|
_getnnz.__doc__ = _spbase._getnnz.__doc__ |
|
|
|
def _check(self): |
|
""" Checks data structure for consistency """ |
|
if self.ndim != len(self.coords): |
|
raise ValueError('mismatching number of index arrays for shape; ' |
|
f'got {len(self.coords)}, expected {self.ndim}') |
|
|
|
|
|
for i, idx in enumerate(self.coords): |
|
if idx.dtype.kind != 'i': |
|
warn(f'index array {i} has non-integer dtype ({idx.dtype.name})', |
|
stacklevel=3) |
|
|
|
idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.shape)) |
|
self.coords = tuple(np.asarray(idx, dtype=idx_dtype) |
|
for idx in self.coords) |
|
self.data = to_native(self.data) |
|
|
|
if self.nnz > 0: |
|
for i, idx in enumerate(self.coords): |
|
if idx.max() >= self.shape[i]: |
|
raise ValueError(f'axis {i} index {idx.max()} exceeds ' |
|
f'matrix dimension {self.shape[i]}') |
|
if idx.min() < 0: |
|
raise ValueError(f'negative axis {i} index: {idx.min()}') |
|
|
|
def transpose(self, axes=None, copy=False): |
|
if axes is None: |
|
axes = range(self.ndim)[::-1] |
|
elif isinstance(self, sparray): |
|
if len(axes) != self.ndim: |
|
raise ValueError("axes don't match matrix dimensions") |
|
if len(set(axes)) != self.ndim: |
|
raise ValueError("repeated axis in transpose") |
|
elif axes != (1, 0): |
|
raise ValueError("Sparse matrices do not support an 'axes' " |
|
"parameter because swapping dimensions is the " |
|
"only logical permutation.") |
|
|
|
permuted_shape = tuple(self._shape[i] for i in axes) |
|
permuted_coords = tuple(self.coords[i] for i in axes) |
|
return self.__class__((self.data, permuted_coords), |
|
shape=permuted_shape, copy=copy) |
|
|
|
transpose.__doc__ = _spbase.transpose.__doc__ |
|
|
|
def resize(self, *shape) -> None: |
|
is_array = isinstance(self, sparray) |
|
shape = check_shape(shape, allow_1d=is_array) |
|
|
|
|
|
if len(shape) > self.ndim: |
|
flat_coords = _ravel_coords(self.coords, self.shape) |
|
max_size = math.prod(shape) |
|
self.coords = np.unravel_index(flat_coords[:max_size], shape) |
|
self.data = self.data[:max_size] |
|
self._shape = shape |
|
return |
|
|
|
|
|
if len(shape) < self.ndim: |
|
tmp_shape = ( |
|
self._shape[:len(shape) - 1] |
|
+ (-1,) |
|
+ (1,) * (self.ndim - len(shape)) |
|
) |
|
tmp = self.reshape(tmp_shape) |
|
self.coords = tmp.coords[:len(shape)] |
|
self._shape = tmp.shape[:len(shape)] |
|
|
|
|
|
is_truncating = any(old > new for old, new in zip(self.shape, shape)) |
|
if is_truncating: |
|
mask = np.logical_and.reduce([ |
|
idx < size for idx, size in zip(self.coords, shape) |
|
]) |
|
if not mask.all(): |
|
self.coords = tuple(idx[mask] for idx in self.coords) |
|
self.data = self.data[mask] |
|
|
|
self._shape = shape |
|
|
|
resize.__doc__ = _spbase.resize.__doc__ |
|
|
|
def toarray(self, order=None, out=None): |
|
B = self._process_toarray_args(order, out) |
|
fortran = int(B.flags.f_contiguous) |
|
if not fortran and not B.flags.c_contiguous: |
|
raise ValueError("Output array must be C or F contiguous") |
|
if self.ndim > 2: |
|
raise ValueError("Cannot densify higher-rank sparse array") |
|
|
|
|
|
M, N = self._shape_as_2d |
|
coo_todense(M, N, self.nnz, self.row, self.col, self.data, |
|
B.ravel('A'), fortran) |
|
|
|
return B.reshape(self.shape) |
|
|
|
toarray.__doc__ = _spbase.toarray.__doc__ |
|
|
|
def tocsc(self, copy=False): |
|
"""Convert this array/matrix to Compressed Sparse Column format |
|
|
|
Duplicate entries will be summed together. |
|
|
|
Examples |
|
-------- |
|
>>> from numpy import array |
|
>>> from scipy.sparse import coo_array |
|
>>> row = array([0, 0, 1, 3, 1, 0, 0]) |
|
>>> col = array([0, 2, 1, 3, 1, 0, 0]) |
|
>>> data = array([1, 1, 1, 1, 1, 1, 1]) |
|
>>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsc() |
|
>>> A.toarray() |
|
array([[3, 0, 1, 0], |
|
[0, 2, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
""" |
|
if self.ndim != 2: |
|
raise ValueError("Cannot convert a 1d sparse array to csc format") |
|
if self.nnz == 0: |
|
return self._csc_container(self.shape, dtype=self.dtype) |
|
else: |
|
from ._csc import csc_array |
|
indptr, indices, data, shape = self._coo_to_compressed(csc_array._swap) |
|
|
|
x = self._csc_container((data, indices, indptr), shape=shape) |
|
if not self.has_canonical_format: |
|
x.sum_duplicates() |
|
return x |
|
|
|
def tocsr(self, copy=False): |
|
"""Convert this array/matrix to Compressed Sparse Row format |
|
|
|
Duplicate entries will be summed together. |
|
|
|
Examples |
|
-------- |
|
>>> from numpy import array |
|
>>> from scipy.sparse import coo_array |
|
>>> row = array([0, 0, 1, 3, 1, 0, 0]) |
|
>>> col = array([0, 2, 1, 3, 1, 0, 0]) |
|
>>> data = array([1, 1, 1, 1, 1, 1, 1]) |
|
>>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsr() |
|
>>> A.toarray() |
|
array([[3, 0, 1, 0], |
|
[0, 2, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
""" |
|
if self.ndim != 2: |
|
raise ValueError("Cannot convert a 1d sparse array to csr format") |
|
if self.nnz == 0: |
|
return self._csr_container(self.shape, dtype=self.dtype) |
|
else: |
|
from ._csr import csr_array |
|
indptr, indices, data, shape = self._coo_to_compressed(csr_array._swap) |
|
|
|
x = self._csr_container((data, indices, indptr), shape=self.shape) |
|
if not self.has_canonical_format: |
|
x.sum_duplicates() |
|
return x |
|
|
|
def _coo_to_compressed(self, swap): |
|
"""convert (shape, coords, data) to (indptr, indices, data, shape)""" |
|
M, N = swap(self.shape) |
|
major, minor = swap(self.coords) |
|
nnz = len(major) |
|
|
|
|
|
idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.nnz, N)) |
|
major = major.astype(idx_dtype, copy=False) |
|
minor = minor.astype(idx_dtype, copy=False) |
|
|
|
indptr = np.empty(M + 1, dtype=idx_dtype) |
|
indices = np.empty_like(minor, dtype=idx_dtype) |
|
data = np.empty_like(self.data, dtype=self.dtype) |
|
|
|
coo_tocsr(M, N, nnz, major, minor, self.data, indptr, indices, data) |
|
return indptr, indices, data, self.shape |
|
|
|
def tocoo(self, copy=False): |
|
if copy: |
|
return self.copy() |
|
else: |
|
return self |
|
|
|
tocoo.__doc__ = _spbase.tocoo.__doc__ |
|
|
|
def todia(self, copy=False): |
|
if self.ndim != 2: |
|
raise ValueError("Cannot convert a 1d sparse array to dia format") |
|
self.sum_duplicates() |
|
ks = self.col - self.row |
|
diags, diag_idx = np.unique(ks, return_inverse=True) |
|
|
|
if len(diags) > 100: |
|
|
|
warn("Constructing a DIA matrix with %d diagonals " |
|
"is inefficient" % len(diags), |
|
SparseEfficiencyWarning, stacklevel=2) |
|
|
|
|
|
if self.data.size == 0: |
|
data = np.zeros((0, 0), dtype=self.dtype) |
|
else: |
|
data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype) |
|
data[diag_idx, self.col] = self.data |
|
|
|
return self._dia_container((data, diags), shape=self.shape) |
|
|
|
todia.__doc__ = _spbase.todia.__doc__ |
|
|
|
def todok(self, copy=False): |
|
self.sum_duplicates() |
|
dok = self._dok_container(self.shape, dtype=self.dtype) |
|
|
|
if self.ndim == 1: |
|
coords = self.coords[0] |
|
else: |
|
coords = zip(*self.coords) |
|
|
|
dok._dict = dict(zip(coords, self.data)) |
|
return dok |
|
|
|
todok.__doc__ = _spbase.todok.__doc__ |
|
|
|
def diagonal(self, k=0): |
|
if self.ndim != 2: |
|
raise ValueError("diagonal requires two dimensions") |
|
rows, cols = self.shape |
|
if k <= -rows or k >= cols: |
|
return np.empty(0, dtype=self.data.dtype) |
|
diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)), |
|
dtype=self.dtype) |
|
diag_mask = (self.row + k) == self.col |
|
|
|
if self.has_canonical_format: |
|
row = self.row[diag_mask] |
|
data = self.data[diag_mask] |
|
else: |
|
inds = tuple(idx[diag_mask] for idx in self.coords) |
|
(row, _), data = self._sum_duplicates(inds, self.data[diag_mask]) |
|
diag[row + min(k, 0)] = data |
|
|
|
return diag |
|
|
|
diagonal.__doc__ = _data_matrix.diagonal.__doc__ |
|
|
|
def _setdiag(self, values, k): |
|
if self.ndim != 2: |
|
raise ValueError("setting a diagonal requires two dimensions") |
|
M, N = self.shape |
|
if values.ndim and not len(values): |
|
return |
|
idx_dtype = self.row.dtype |
|
|
|
|
|
full_keep = self.col - self.row != k |
|
if k < 0: |
|
max_index = min(M+k, N) |
|
if values.ndim: |
|
max_index = min(max_index, len(values)) |
|
keep = np.logical_or(full_keep, self.col >= max_index) |
|
new_row = np.arange(-k, -k + max_index, dtype=idx_dtype) |
|
new_col = np.arange(max_index, dtype=idx_dtype) |
|
else: |
|
max_index = min(M, N-k) |
|
if values.ndim: |
|
max_index = min(max_index, len(values)) |
|
keep = np.logical_or(full_keep, self.row >= max_index) |
|
new_row = np.arange(max_index, dtype=idx_dtype) |
|
new_col = np.arange(k, k + max_index, dtype=idx_dtype) |
|
|
|
|
|
if values.ndim: |
|
new_data = values[:max_index] |
|
else: |
|
new_data = np.empty(max_index, dtype=self.dtype) |
|
new_data[:] = values |
|
|
|
|
|
self.coords = (np.concatenate((self.row[keep], new_row)), |
|
np.concatenate((self.col[keep], new_col))) |
|
self.data = np.concatenate((self.data[keep], new_data)) |
|
self.has_canonical_format = False |
|
|
|
|
|
def _with_data(self, data, copy=True): |
|
"""Returns a matrix with the same sparsity structure as self, |
|
but with different data. By default the index arrays are copied. |
|
""" |
|
if copy: |
|
coords = tuple(idx.copy() for idx in self.coords) |
|
else: |
|
coords = self.coords |
|
return self.__class__((data, coords), shape=self.shape, dtype=data.dtype) |
|
|
|
def sum_duplicates(self) -> None: |
|
"""Eliminate duplicate entries by adding them together |
|
|
|
This is an *in place* operation |
|
""" |
|
if self.has_canonical_format: |
|
return |
|
summed = self._sum_duplicates(self.coords, self.data) |
|
self.coords, self.data = summed |
|
self.has_canonical_format = True |
|
|
|
def _sum_duplicates(self, coords, data): |
|
|
|
if len(data) == 0: |
|
return coords, data |
|
|
|
|
|
|
|
order = np.lexsort(coords[::-1]) |
|
coords = tuple(idx[order] for idx in coords) |
|
data = data[order] |
|
unique_mask = np.logical_or.reduce([ |
|
idx[1:] != idx[:-1] for idx in coords |
|
]) |
|
unique_mask = np.append(True, unique_mask) |
|
coords = tuple(idx[unique_mask] for idx in coords) |
|
unique_inds, = np.nonzero(unique_mask) |
|
data = np.add.reduceat(data, unique_inds, dtype=self.dtype) |
|
return coords, data |
|
|
|
def eliminate_zeros(self): |
|
"""Remove zero entries from the array/matrix |
|
|
|
This is an *in place* operation |
|
""" |
|
mask = self.data != 0 |
|
self.data = self.data[mask] |
|
self.coords = tuple(idx[mask] for idx in self.coords) |
|
|
|
|
|
|
|
|
|
|
|
def _add_dense(self, other): |
|
if other.shape != self.shape: |
|
raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})') |
|
dtype = upcast_char(self.dtype.char, other.dtype.char) |
|
result = np.array(other, dtype=dtype, copy=True) |
|
fortran = int(result.flags.f_contiguous) |
|
M, N = self._shape_as_2d |
|
coo_todense(M, N, self.nnz, self.row, self.col, self.data, |
|
result.ravel('A'), fortran) |
|
return self._container(result, copy=False) |
|
|
|
def _matmul_vector(self, other): |
|
result_shape = self.shape[0] if self.ndim > 1 else 1 |
|
result = np.zeros(result_shape, |
|
dtype=upcast_char(self.dtype.char, other.dtype.char)) |
|
|
|
if self.ndim == 2: |
|
col = self.col |
|
row = self.row |
|
elif self.ndim == 1: |
|
col = self.coords[0] |
|
row = np.zeros_like(col) |
|
else: |
|
raise NotImplementedError( |
|
f"coo_matvec not implemented for ndim={self.ndim}") |
|
|
|
coo_matvec(self.nnz, row, col, self.data, other, result) |
|
|
|
if isinstance(self, sparray) and result_shape == 1: |
|
return result[0] |
|
return result |
|
|
|
def _matmul_multivector(self, other): |
|
result_dtype = upcast_char(self.dtype.char, other.dtype.char) |
|
if self.ndim == 2: |
|
result_shape = (other.shape[1], self.shape[0]) |
|
col = self.col |
|
row = self.row |
|
elif self.ndim == 1: |
|
result_shape = (other.shape[1],) |
|
col = self.coords[0] |
|
row = np.zeros_like(col) |
|
else: |
|
raise NotImplementedError( |
|
f"coo_matvec not implemented for ndim={self.ndim}") |
|
|
|
result = np.zeros(result_shape, dtype=result_dtype) |
|
for i, other_col in enumerate(other.T): |
|
coo_matvec(self.nnz, row, col, self.data, other_col, result[i:i + 1]) |
|
return result.T.view(type=type(other)) |
|
|
|
|
|
def _ravel_coords(coords, shape, order='C'): |
|
"""Like np.ravel_multi_index, but avoids some overflow issues.""" |
|
if len(coords) == 1: |
|
return coords[0] |
|
|
|
if len(coords) == 2: |
|
nrows, ncols = shape |
|
row, col = coords |
|
if order == 'C': |
|
maxval = (ncols * max(0, nrows - 1) + max(0, ncols - 1)) |
|
idx_dtype = get_index_dtype(maxval=maxval) |
|
return np.multiply(ncols, row, dtype=idx_dtype) + col |
|
elif order == 'F': |
|
maxval = (nrows * max(0, ncols - 1) + max(0, nrows - 1)) |
|
idx_dtype = get_index_dtype(maxval=maxval) |
|
return np.multiply(nrows, col, dtype=idx_dtype) + row |
|
else: |
|
raise ValueError("'order' must be 'C' or 'F'") |
|
return np.ravel_multi_index(coords, shape, order=order) |
|
|
|
|
|
def isspmatrix_coo(x): |
|
"""Is `x` of coo_matrix type? |
|
|
|
Parameters |
|
---------- |
|
x |
|
object to check for being a coo matrix |
|
|
|
Returns |
|
------- |
|
bool |
|
True if `x` is a coo matrix, False otherwise |
|
|
|
Examples |
|
-------- |
|
>>> from scipy.sparse import coo_array, coo_matrix, csr_matrix, isspmatrix_coo |
|
>>> isspmatrix_coo(coo_matrix([[5]])) |
|
True |
|
>>> isspmatrix_coo(coo_array([[5]])) |
|
False |
|
>>> isspmatrix_coo(csr_matrix([[5]])) |
|
False |
|
""" |
|
return isinstance(x, coo_matrix) |
|
|
|
|
|
|
|
class coo_array(_coo_base, sparray): |
|
""" |
|
A sparse array in COOrdinate format. |
|
|
|
Also known as the 'ijv' or 'triplet' format. |
|
|
|
This can be instantiated in several ways: |
|
coo_array(D) |
|
where D is an ndarray |
|
|
|
coo_array(S) |
|
with another sparse array or matrix S (equivalent to S.tocoo()) |
|
|
|
coo_array(shape, [dtype]) |
|
to construct an empty sparse array with shape `shape` |
|
dtype is optional, defaulting to dtype='d'. |
|
|
|
coo_array((data, coords), [shape]) |
|
to construct from existing data and index arrays: |
|
1. data[:] the entries of the sparse array, in any order |
|
2. coords[i][:] the axis-i coordinates of the data entries |
|
|
|
Where ``A[coords] = data``, and coords is a tuple of index arrays. |
|
When shape is not specified, it is inferred from the index arrays. |
|
|
|
Attributes |
|
---------- |
|
dtype : dtype |
|
Data type of the sparse array |
|
shape : tuple of integers |
|
Shape of the sparse array |
|
ndim : int |
|
Number of dimensions of the sparse array |
|
nnz |
|
size |
|
data |
|
COO format data array of the sparse array |
|
coords |
|
COO format tuple of index arrays |
|
has_canonical_format : bool |
|
Whether the matrix has sorted coordinates and no duplicates |
|
format |
|
T |
|
|
|
Notes |
|
----- |
|
|
|
Sparse arrays can be used in arithmetic operations: they support |
|
addition, subtraction, multiplication, division, and matrix power. |
|
|
|
Advantages of the COO format |
|
- facilitates fast conversion among sparse formats |
|
- permits duplicate entries (see example) |
|
- very fast conversion to and from CSR/CSC formats |
|
|
|
Disadvantages of the COO format |
|
- does not directly support: |
|
+ arithmetic operations |
|
+ slicing |
|
|
|
Intended Usage |
|
- COO is a fast format for constructing sparse arrays |
|
- Once a COO array has been constructed, convert to CSR or |
|
CSC format for fast arithmetic and matrix vector operations |
|
- By default when converting to CSR or CSC format, duplicate (i,j) |
|
entries will be summed together. This facilitates efficient |
|
construction of finite element matrices and the like. (see example) |
|
|
|
Canonical format |
|
- Entries and coordinates sorted by row, then column. |
|
- There are no duplicate entries (i.e. duplicate (i,j) locations) |
|
- Data arrays MAY have explicit zeros. |
|
|
|
Examples |
|
-------- |
|
|
|
>>> # Constructing an empty sparse array |
|
>>> import numpy as np |
|
>>> from scipy.sparse import coo_array |
|
>>> coo_array((3, 4), dtype=np.int8).toarray() |
|
array([[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]], dtype=int8) |
|
|
|
>>> # Constructing a sparse array using ijv format |
|
>>> row = np.array([0, 3, 1, 0]) |
|
>>> col = np.array([0, 3, 1, 2]) |
|
>>> data = np.array([4, 5, 7, 9]) |
|
>>> coo_array((data, (row, col)), shape=(4, 4)).toarray() |
|
array([[4, 0, 9, 0], |
|
[0, 7, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 5]]) |
|
|
|
>>> # Constructing a sparse array with duplicate coordinates |
|
>>> row = np.array([0, 0, 1, 3, 1, 0, 0]) |
|
>>> col = np.array([0, 2, 1, 3, 1, 0, 0]) |
|
>>> data = np.array([1, 1, 1, 1, 1, 1, 1]) |
|
>>> coo = coo_array((data, (row, col)), shape=(4, 4)) |
|
>>> # Duplicate coordinates are maintained until implicitly or explicitly summed |
|
>>> np.max(coo.data) |
|
1 |
|
>>> coo.toarray() |
|
array([[3, 0, 1, 0], |
|
[0, 2, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
""" |
|
|
|
|
|
class coo_matrix(spmatrix, _coo_base): |
|
""" |
|
A sparse matrix in COOrdinate format. |
|
|
|
Also known as the 'ijv' or 'triplet' format. |
|
|
|
This can be instantiated in several ways: |
|
coo_matrix(D) |
|
where D is a 2-D ndarray |
|
|
|
coo_matrix(S) |
|
with another sparse array or matrix S (equivalent to S.tocoo()) |
|
|
|
coo_matrix((M, N), [dtype]) |
|
to construct an empty matrix with shape (M, N) |
|
dtype is optional, defaulting to dtype='d'. |
|
|
|
coo_matrix((data, (i, j)), [shape=(M, N)]) |
|
to construct from three arrays: |
|
1. data[:] the entries of the matrix, in any order |
|
2. i[:] the row indices of the matrix entries |
|
3. j[:] the column indices of the matrix entries |
|
|
|
Where ``A[i[k], j[k]] = data[k]``. When shape is not |
|
specified, it is inferred from the index arrays |
|
|
|
Attributes |
|
---------- |
|
dtype : dtype |
|
Data type of the matrix |
|
shape : 2-tuple |
|
Shape of the matrix |
|
ndim : int |
|
Number of dimensions (this is always 2) |
|
nnz |
|
size |
|
data |
|
COO format data array of the matrix |
|
row |
|
COO format row index array of the matrix |
|
col |
|
COO format column index array of the matrix |
|
has_canonical_format : bool |
|
Whether the matrix has sorted indices and no duplicates |
|
format |
|
T |
|
|
|
Notes |
|
----- |
|
|
|
Sparse matrices can be used in arithmetic operations: they support |
|
addition, subtraction, multiplication, division, and matrix power. |
|
|
|
Advantages of the COO format |
|
- facilitates fast conversion among sparse formats |
|
- permits duplicate entries (see example) |
|
- very fast conversion to and from CSR/CSC formats |
|
|
|
Disadvantages of the COO format |
|
- does not directly support: |
|
+ arithmetic operations |
|
+ slicing |
|
|
|
Intended Usage |
|
- COO is a fast format for constructing sparse matrices |
|
- Once a COO matrix has been constructed, convert to CSR or |
|
CSC format for fast arithmetic and matrix vector operations |
|
- By default when converting to CSR or CSC format, duplicate (i,j) |
|
entries will be summed together. This facilitates efficient |
|
construction of finite element matrices and the like. (see example) |
|
|
|
Canonical format |
|
- Entries and coordinates sorted by row, then column. |
|
- There are no duplicate entries (i.e. duplicate (i,j) locations) |
|
- Data arrays MAY have explicit zeros. |
|
|
|
Examples |
|
-------- |
|
|
|
>>> # Constructing an empty matrix |
|
>>> import numpy as np |
|
>>> from scipy.sparse import coo_matrix |
|
>>> coo_matrix((3, 4), dtype=np.int8).toarray() |
|
array([[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]], dtype=int8) |
|
|
|
>>> # Constructing a matrix using ijv format |
|
>>> row = np.array([0, 3, 1, 0]) |
|
>>> col = np.array([0, 3, 1, 2]) |
|
>>> data = np.array([4, 5, 7, 9]) |
|
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray() |
|
array([[4, 0, 9, 0], |
|
[0, 7, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 5]]) |
|
|
|
>>> # Constructing a matrix with duplicate coordinates |
|
>>> row = np.array([0, 0, 1, 3, 1, 0, 0]) |
|
>>> col = np.array([0, 2, 1, 3, 1, 0, 0]) |
|
>>> data = np.array([1, 1, 1, 1, 1, 1, 1]) |
|
>>> coo = coo_matrix((data, (row, col)), shape=(4, 4)) |
|
>>> # Duplicate coordinates are maintained until implicitly or explicitly summed |
|
>>> np.max(coo.data) |
|
1 |
|
>>> coo.toarray() |
|
array([[3, 0, 1, 0], |
|
[0, 2, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
""" |
|
|
|
def __setstate__(self, state): |
|
if 'coords' not in state: |
|
|
|
|
|
state['coords'] = (state.pop('row'), state.pop('col')) |
|
self.__dict__.update(state) |
|
|