peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/scipy
/sparse
/_extract.py
"""Functions to extract parts of sparse matrices | |
""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['find', 'tril', 'triu'] | |
from ._coo import coo_matrix, coo_array | |
from ._base import sparray | |
def find(A): | |
"""Return the indices and values of the nonzero elements of a matrix | |
Parameters | |
---------- | |
A : dense or sparse array or matrix | |
Matrix whose nonzero elements are desired. | |
Returns | |
------- | |
(I,J,V) : tuple of arrays | |
I,J, and V contain the row indices, column indices, and values | |
of the nonzero entries. | |
Examples | |
-------- | |
>>> from scipy.sparse import csr_array, find | |
>>> A = csr_array([[7.0, 8.0, 0],[0, 0, 9.0]]) | |
>>> find(A) | |
(array([0, 0, 1], dtype=int32), | |
array([0, 1, 2], dtype=int32), | |
array([ 7., 8., 9.])) | |
""" | |
A = coo_array(A, copy=True) | |
A.sum_duplicates() | |
# remove explicit zeros | |
nz_mask = A.data != 0 | |
return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask] | |
def tril(A, k=0, format=None): | |
"""Return the lower triangular portion of a sparse array or matrix | |
Returns the elements on or below the k-th diagonal of A. | |
- k = 0 corresponds to the main diagonal | |
- k > 0 is above the main diagonal | |
- k < 0 is below the main diagonal | |
Parameters | |
---------- | |
A : dense or sparse array or matrix | |
Matrix whose lower trianglar portion is desired. | |
k : integer : optional | |
The top-most diagonal of the lower triangle. | |
format : string | |
Sparse format of the result, e.g. format="csr", etc. | |
Returns | |
------- | |
L : sparse matrix | |
Lower triangular portion of A in sparse format. | |
See Also | |
-------- | |
triu : upper triangle in sparse format | |
Examples | |
-------- | |
>>> from scipy.sparse import csr_array, tril | |
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]], | |
... dtype='int32') | |
>>> A.toarray() | |
array([[1, 2, 0, 0, 3], | |
[4, 5, 0, 6, 7], | |
[0, 0, 8, 9, 0]]) | |
>>> tril(A).toarray() | |
array([[1, 0, 0, 0, 0], | |
[4, 5, 0, 0, 0], | |
[0, 0, 8, 0, 0]]) | |
>>> tril(A).nnz | |
4 | |
>>> tril(A, k=1).toarray() | |
array([[1, 2, 0, 0, 0], | |
[4, 5, 0, 0, 0], | |
[0, 0, 8, 9, 0]]) | |
>>> tril(A, k=-1).toarray() | |
array([[0, 0, 0, 0, 0], | |
[4, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> tril(A, format='csc') | |
<3x5 sparse array of type '<class 'numpy.int32'>' | |
with 4 stored elements in Compressed Sparse Column format> | |
""" | |
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix | |
# convert to COOrdinate format where things are easy | |
A = coo_sparse(A, copy=False) | |
mask = A.row + k >= A.col | |
row = A.row[mask] | |
col = A.col[mask] | |
data = A.data[mask] | |
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype) | |
return new_coo.asformat(format) | |
def triu(A, k=0, format=None): | |
"""Return the upper triangular portion of a sparse array or matrix | |
Returns the elements on or above the k-th diagonal of A. | |
- k = 0 corresponds to the main diagonal | |
- k > 0 is above the main diagonal | |
- k < 0 is below the main diagonal | |
Parameters | |
---------- | |
A : dense or sparse array or matrix | |
Matrix whose upper trianglar portion is desired. | |
k : integer : optional | |
The bottom-most diagonal of the upper triangle. | |
format : string | |
Sparse format of the result, e.g. format="csr", etc. | |
Returns | |
------- | |
L : sparse array or matrix | |
Upper triangular portion of A in sparse format. | |
Sparse array if A is a sparse array, otherwise matrix. | |
See Also | |
-------- | |
tril : lower triangle in sparse format | |
Examples | |
-------- | |
>>> from scipy.sparse import csr_array, triu | |
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]], | |
... dtype='int32') | |
>>> A.toarray() | |
array([[1, 2, 0, 0, 3], | |
[4, 5, 0, 6, 7], | |
[0, 0, 8, 9, 0]]) | |
>>> triu(A).toarray() | |
array([[1, 2, 0, 0, 3], | |
[0, 5, 0, 6, 7], | |
[0, 0, 8, 9, 0]]) | |
>>> triu(A).nnz | |
8 | |
>>> triu(A, k=1).toarray() | |
array([[0, 2, 0, 0, 3], | |
[0, 0, 0, 6, 7], | |
[0, 0, 0, 9, 0]]) | |
>>> triu(A, k=-1).toarray() | |
array([[1, 2, 0, 0, 3], | |
[4, 5, 0, 6, 7], | |
[0, 0, 8, 9, 0]]) | |
>>> triu(A, format='csc') | |
<3x5 sparse array of type '<class 'numpy.int32'>' | |
with 8 stored elements in Compressed Sparse Column format> | |
""" | |
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix | |
# convert to COOrdinate format where things are easy | |
A = coo_sparse(A, copy=False) | |
mask = A.row + k <= A.col | |
row = A.row[mask] | |
col = A.col[mask] | |
data = A.data[mask] | |
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype) | |
return new_coo.asformat(format) | |