|
from .accumulationbounds import AccumBounds, AccumulationBounds |
|
from .singularities import singularities |
|
from sympy.core import Pow, S |
|
from sympy.core.function import diff, expand_mul |
|
from sympy.core.kind import NumberKind |
|
from sympy.core.mod import Mod |
|
from sympy.core.numbers import equal_valued |
|
from sympy.core.relational import Relational |
|
from sympy.core.symbol import Symbol, Dummy |
|
from sympy.core.sympify import _sympify |
|
from sympy.functions.elementary.complexes import Abs, im, re |
|
from sympy.functions.elementary.exponential import exp, log |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
from sympy.functions.elementary.trigonometric import ( |
|
TrigonometricFunction, sin, cos, csc, sec) |
|
from sympy.polys.polytools import degree, lcm_list |
|
from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union, |
|
Complement) |
|
from sympy.sets.fancysets import ImageSet |
|
from sympy.utilities import filldedent |
|
from sympy.utilities.iterables import iterable |
|
|
|
|
|
def continuous_domain(f, symbol, domain): |
|
""" |
|
Returns the intervals in the given domain for which the function |
|
is continuous. |
|
This method is limited by the ability to determine the various |
|
singularities and discontinuities of the given function. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for which the intervals are to be determined. |
|
domain : :py:class:`~.Interval` |
|
The domain over which the continuity of the symbol has to be checked. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Interval, Symbol, S, tan, log, pi, sqrt |
|
>>> from sympy.calculus.util import continuous_domain |
|
>>> x = Symbol('x') |
|
>>> continuous_domain(1/x, x, S.Reals) |
|
Union(Interval.open(-oo, 0), Interval.open(0, oo)) |
|
>>> continuous_domain(tan(x), x, Interval(0, pi)) |
|
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi)) |
|
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5)) |
|
Interval(2, 5) |
|
>>> continuous_domain(log(2*x - 1), x, S.Reals) |
|
Interval.open(1/2, oo) |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.Interval` |
|
Union of all intervals where the function is continuous. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError |
|
If the method to determine continuity of such a function |
|
has not yet been developed. |
|
|
|
""" |
|
from sympy.solvers.inequalities import solve_univariate_inequality |
|
|
|
if domain.is_subset(S.Reals): |
|
constrained_interval = domain |
|
for atom in f.atoms(Pow): |
|
den = atom.exp.as_numer_denom()[1] |
|
if den.is_even and den.is_nonzero: |
|
constraint = solve_univariate_inequality(atom.base >= 0, |
|
symbol).as_set() |
|
constrained_interval = Intersection(constraint, |
|
constrained_interval) |
|
|
|
for atom in f.atoms(log): |
|
constraint = solve_univariate_inequality(atom.args[0] > 0, |
|
symbol).as_set() |
|
constrained_interval = Intersection(constraint, |
|
constrained_interval) |
|
|
|
|
|
return constrained_interval - singularities(f, symbol, domain) |
|
|
|
|
|
def function_range(f, symbol, domain): |
|
""" |
|
Finds the range of a function in a given domain. |
|
This method is limited by the ability to determine the singularities and |
|
determine limits. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for which the range of function is to be determined. |
|
domain : :py:class:`~.Interval` |
|
The domain under which the range of the function has to be found. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Interval, Symbol, S, exp, log, pi, sqrt, sin, tan |
|
>>> from sympy.calculus.util import function_range |
|
>>> x = Symbol('x') |
|
>>> function_range(sin(x), x, Interval(0, 2*pi)) |
|
Interval(-1, 1) |
|
>>> function_range(tan(x), x, Interval(-pi/2, pi/2)) |
|
Interval(-oo, oo) |
|
>>> function_range(1/x, x, S.Reals) |
|
Union(Interval.open(-oo, 0), Interval.open(0, oo)) |
|
>>> function_range(exp(x), x, S.Reals) |
|
Interval.open(0, oo) |
|
>>> function_range(log(x), x, S.Reals) |
|
Interval(-oo, oo) |
|
>>> function_range(sqrt(x), x, Interval(-5, 9)) |
|
Interval(0, 3) |
|
|
|
Returns |
|
======= |
|
|
|
:py:class:`~.Interval` |
|
Union of all ranges for all intervals under domain where function is |
|
continuous. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError |
|
If any of the intervals, in the given domain, for which function |
|
is continuous are not finite or real, |
|
OR if the critical points of the function on the domain cannot be found. |
|
""" |
|
|
|
if domain is S.EmptySet: |
|
return S.EmptySet |
|
|
|
period = periodicity(f, symbol) |
|
if period == S.Zero: |
|
|
|
return FiniteSet(f.expand()) |
|
|
|
from sympy.series.limits import limit |
|
from sympy.solvers.solveset import solveset |
|
|
|
if period is not None: |
|
if isinstance(domain, Interval): |
|
if (domain.inf - domain.sup).is_infinite: |
|
domain = Interval(0, period) |
|
elif isinstance(domain, Union): |
|
for sub_dom in domain.args: |
|
if isinstance(sub_dom, Interval) and \ |
|
((sub_dom.inf - sub_dom.sup).is_infinite): |
|
domain = Interval(0, period) |
|
|
|
intervals = continuous_domain(f, symbol, domain) |
|
range_int = S.EmptySet |
|
if isinstance(intervals,(Interval, FiniteSet)): |
|
interval_iter = (intervals,) |
|
|
|
elif isinstance(intervals, Union): |
|
interval_iter = intervals.args |
|
|
|
else: |
|
raise NotImplementedError(filldedent(''' |
|
Unable to find range for the given domain. |
|
''')) |
|
|
|
for interval in interval_iter: |
|
if isinstance(interval, FiniteSet): |
|
for singleton in interval: |
|
if singleton in domain: |
|
range_int += FiniteSet(f.subs(symbol, singleton)) |
|
elif isinstance(interval, Interval): |
|
vals = S.EmptySet |
|
critical_points = S.EmptySet |
|
critical_values = S.EmptySet |
|
bounds = ((interval.left_open, interval.inf, '+'), |
|
(interval.right_open, interval.sup, '-')) |
|
|
|
for is_open, limit_point, direction in bounds: |
|
if is_open: |
|
critical_values += FiniteSet(limit(f, symbol, limit_point, direction)) |
|
vals += critical_values |
|
|
|
else: |
|
vals += FiniteSet(f.subs(symbol, limit_point)) |
|
|
|
solution = solveset(f.diff(symbol), symbol, interval) |
|
|
|
if not iterable(solution): |
|
raise NotImplementedError( |
|
'Unable to find critical points for {}'.format(f)) |
|
if isinstance(solution, ImageSet): |
|
raise NotImplementedError( |
|
'Infinite number of critical points for {}'.format(f)) |
|
|
|
critical_points += solution |
|
|
|
for critical_point in critical_points: |
|
vals += FiniteSet(f.subs(symbol, critical_point)) |
|
|
|
left_open, right_open = False, False |
|
|
|
if critical_values is not S.EmptySet: |
|
if critical_values.inf == vals.inf: |
|
left_open = True |
|
|
|
if critical_values.sup == vals.sup: |
|
right_open = True |
|
|
|
range_int += Interval(vals.inf, vals.sup, left_open, right_open) |
|
else: |
|
raise NotImplementedError(filldedent(''' |
|
Unable to find range for the given domain. |
|
''')) |
|
|
|
return range_int |
|
|
|
|
|
def not_empty_in(finset_intersection, *syms): |
|
""" |
|
Finds the domain of the functions in ``finset_intersection`` in which the |
|
``finite_set`` is not-empty. |
|
|
|
Parameters |
|
========== |
|
|
|
finset_intersection : Intersection of FiniteSet |
|
The unevaluated intersection of FiniteSet containing |
|
real-valued functions with Union of Sets |
|
syms : Tuple of symbols |
|
Symbol for which domain is to be found |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError |
|
The algorithms to find the non-emptiness of the given FiniteSet are |
|
not yet implemented. |
|
ValueError |
|
The input is not valid. |
|
RuntimeError |
|
It is a bug, please report it to the github issue tracker |
|
(https://github.com/sympy/sympy/issues). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import FiniteSet, Interval, not_empty_in, oo |
|
>>> from sympy.abc import x |
|
>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x) |
|
Interval(0, 2) |
|
>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) |
|
Union(Interval(1, 2), Interval(-sqrt(2), -1)) |
|
>>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) |
|
Union(Interval.Lopen(-2, -1), Interval(2, oo)) |
|
""" |
|
|
|
|
|
|
|
|
|
if len(syms) == 0: |
|
raise ValueError("One or more symbols must be given in syms.") |
|
|
|
if finset_intersection is S.EmptySet: |
|
return S.EmptySet |
|
|
|
if isinstance(finset_intersection, Union): |
|
elm_in_sets = finset_intersection.args[0] |
|
return Union(not_empty_in(finset_intersection.args[1], *syms), |
|
elm_in_sets) |
|
|
|
if isinstance(finset_intersection, FiniteSet): |
|
finite_set = finset_intersection |
|
_sets = S.Reals |
|
else: |
|
finite_set = finset_intersection.args[1] |
|
_sets = finset_intersection.args[0] |
|
|
|
if not isinstance(finite_set, FiniteSet): |
|
raise ValueError('A FiniteSet must be given, not %s: %s' % |
|
(type(finite_set), finite_set)) |
|
|
|
if len(syms) == 1: |
|
symb = syms[0] |
|
else: |
|
raise NotImplementedError('more than one variables %s not handled' % |
|
(syms,)) |
|
|
|
def elm_domain(expr, intrvl): |
|
""" Finds the domain of an expression in any given interval """ |
|
from sympy.solvers.solveset import solveset |
|
|
|
_start = intrvl.start |
|
_end = intrvl.end |
|
_singularities = solveset(expr.as_numer_denom()[1], symb, |
|
domain=S.Reals) |
|
|
|
if intrvl.right_open: |
|
if _end is S.Infinity: |
|
_domain1 = S.Reals |
|
else: |
|
_domain1 = solveset(expr < _end, symb, domain=S.Reals) |
|
else: |
|
_domain1 = solveset(expr <= _end, symb, domain=S.Reals) |
|
|
|
if intrvl.left_open: |
|
if _start is S.NegativeInfinity: |
|
_domain2 = S.Reals |
|
else: |
|
_domain2 = solveset(expr > _start, symb, domain=S.Reals) |
|
else: |
|
_domain2 = solveset(expr >= _start, symb, domain=S.Reals) |
|
|
|
|
|
expr_with_sing = Intersection(_domain1, _domain2) |
|
expr_domain = Complement(expr_with_sing, _singularities) |
|
return expr_domain |
|
|
|
if isinstance(_sets, Interval): |
|
return Union(*[elm_domain(element, _sets) for element in finite_set]) |
|
|
|
if isinstance(_sets, Union): |
|
_domain = S.EmptySet |
|
for intrvl in _sets.args: |
|
_domain_element = Union(*[elm_domain(element, intrvl) |
|
for element in finite_set]) |
|
_domain = Union(_domain, _domain_element) |
|
return _domain |
|
|
|
|
|
def periodicity(f, symbol, check=False): |
|
""" |
|
Tests the given function for periodicity in the given symbol. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for which the period is to be determined. |
|
check : bool, optional |
|
The flag to verify whether the value being returned is a period or not. |
|
|
|
Returns |
|
======= |
|
|
|
period |
|
The period of the function is returned. |
|
``None`` is returned when the function is aperiodic or has a complex period. |
|
The value of $0$ is returned as the period of a constant function. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError |
|
The value of the period computed cannot be verified. |
|
|
|
|
|
Notes |
|
===== |
|
|
|
Currently, we do not support functions with a complex period. |
|
The period of functions having complex periodic values such |
|
as ``exp``, ``sinh`` is evaluated to ``None``. |
|
|
|
The value returned might not be the "fundamental" period of the given |
|
function i.e. it may not be the smallest periodic value of the function. |
|
|
|
The verification of the period through the ``check`` flag is not reliable |
|
due to internal simplification of the given expression. Hence, it is set |
|
to ``False`` by default. |
|
|
|
Examples |
|
======== |
|
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp |
|
>>> x = Symbol('x') |
|
>>> f = sin(x) + sin(2*x) + sin(3*x) |
|
>>> periodicity(f, x) |
|
2*pi |
|
>>> periodicity(sin(x)*cos(x), x) |
|
pi |
|
>>> periodicity(exp(tan(2*x) - 1), x) |
|
pi/2 |
|
>>> periodicity(sin(4*x)**cos(2*x), x) |
|
pi |
|
>>> periodicity(exp(x), x) |
|
""" |
|
if symbol.kind is not NumberKind: |
|
raise NotImplementedError("Cannot use symbol of kind %s" % symbol.kind) |
|
temp = Dummy('x', real=True) |
|
f = f.subs(symbol, temp) |
|
symbol = temp |
|
|
|
def _check(orig_f, period): |
|
'''Return the checked period or raise an error.''' |
|
new_f = orig_f.subs(symbol, symbol + period) |
|
if new_f.equals(orig_f): |
|
return period |
|
else: |
|
raise NotImplementedError(filldedent(''' |
|
The period of the given function cannot be verified. |
|
When `%s` was replaced with `%s + %s` in `%s`, the result |
|
was `%s` which was not recognized as being the same as |
|
the original function. |
|
So either the period was wrong or the two forms were |
|
not recognized as being equal. |
|
Set check=False to obtain the value.''' % |
|
(symbol, symbol, period, orig_f, new_f))) |
|
|
|
orig_f = f |
|
period = None |
|
|
|
if isinstance(f, Relational): |
|
f = f.lhs - f.rhs |
|
|
|
f = f.simplify() |
|
|
|
if symbol not in f.free_symbols: |
|
return S.Zero |
|
|
|
if isinstance(f, TrigonometricFunction): |
|
try: |
|
period = f.period(symbol) |
|
except NotImplementedError: |
|
pass |
|
|
|
if isinstance(f, Abs): |
|
arg = f.args[0] |
|
if isinstance(arg, (sec, csc, cos)): |
|
|
|
|
|
|
|
arg = sin(arg.args[0]) |
|
period = periodicity(arg, symbol) |
|
if period is not None and isinstance(arg, sin): |
|
|
|
|
|
|
|
|
|
orig_f = Abs(arg) |
|
try: |
|
return _check(orig_f, period/2) |
|
except NotImplementedError as err: |
|
if check: |
|
raise NotImplementedError(err) |
|
|
|
|
|
|
|
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1): |
|
f = Pow(S.Exp1, expand_mul(f.exp)) |
|
if im(f) != 0: |
|
period_real = periodicity(re(f), symbol) |
|
period_imag = periodicity(im(f), symbol) |
|
if period_real is not None and period_imag is not None: |
|
period = lcim([period_real, period_imag]) |
|
|
|
if f.is_Pow and f.base != S.Exp1: |
|
base, expo = f.args |
|
base_has_sym = base.has(symbol) |
|
expo_has_sym = expo.has(symbol) |
|
|
|
if base_has_sym and not expo_has_sym: |
|
period = periodicity(base, symbol) |
|
|
|
elif expo_has_sym and not base_has_sym: |
|
period = periodicity(expo, symbol) |
|
|
|
else: |
|
period = _periodicity(f.args, symbol) |
|
|
|
elif f.is_Mul: |
|
coeff, g = f.as_independent(symbol, as_Add=False) |
|
if isinstance(g, TrigonometricFunction) or not equal_valued(coeff, 1): |
|
period = periodicity(g, symbol) |
|
else: |
|
period = _periodicity(g.args, symbol) |
|
|
|
elif f.is_Add: |
|
k, g = f.as_independent(symbol) |
|
if k is not S.Zero: |
|
return periodicity(g, symbol) |
|
|
|
period = _periodicity(g.args, symbol) |
|
|
|
elif isinstance(f, Mod): |
|
a, n = f.args |
|
|
|
if a == symbol: |
|
period = n |
|
elif isinstance(a, TrigonometricFunction): |
|
period = periodicity(a, symbol) |
|
|
|
elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and |
|
symbol not in n.free_symbols): |
|
period = Abs(n / a.diff(symbol)) |
|
|
|
elif isinstance(f, Piecewise): |
|
pass |
|
|
|
elif period is None: |
|
from sympy.solvers.decompogen import compogen, decompogen |
|
g_s = decompogen(f, symbol) |
|
num_of_gs = len(g_s) |
|
if num_of_gs > 1: |
|
for index, g in enumerate(reversed(g_s)): |
|
start_index = num_of_gs - 1 - index |
|
g = compogen(g_s[start_index:], symbol) |
|
if g not in (orig_f, f): |
|
period = periodicity(g, symbol) |
|
if period is not None: |
|
break |
|
|
|
if period is not None: |
|
if check: |
|
return _check(orig_f, period) |
|
return period |
|
|
|
return None |
|
|
|
|
|
def _periodicity(args, symbol): |
|
""" |
|
Helper for `periodicity` to find the period of a list of simpler |
|
functions. |
|
It uses the `lcim` method to find the least common period of |
|
all the functions. |
|
|
|
Parameters |
|
========== |
|
|
|
args : Tuple of :py:class:`~.Symbol` |
|
All the symbols present in a function. |
|
|
|
symbol : :py:class:`~.Symbol` |
|
The symbol over which the function is to be evaluated. |
|
|
|
Returns |
|
======= |
|
|
|
period |
|
The least common period of the function for all the symbols |
|
of the function. |
|
``None`` if for at least one of the symbols the function is aperiodic. |
|
|
|
""" |
|
periods = [] |
|
for f in args: |
|
period = periodicity(f, symbol) |
|
if period is None: |
|
return None |
|
|
|
if period is not S.Zero: |
|
periods.append(period) |
|
|
|
if len(periods) > 1: |
|
return lcim(periods) |
|
|
|
if periods: |
|
return periods[0] |
|
|
|
|
|
def lcim(numbers): |
|
"""Returns the least common integral multiple of a list of numbers. |
|
|
|
The numbers can be rational or irrational or a mixture of both. |
|
`None` is returned for incommensurable numbers. |
|
|
|
Parameters |
|
========== |
|
|
|
numbers : list |
|
Numbers (rational and/or irrational) for which lcim is to be found. |
|
|
|
Returns |
|
======= |
|
|
|
number |
|
lcim if it exists, otherwise ``None`` for incommensurable numbers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.calculus.util import lcim |
|
>>> from sympy import S, pi |
|
>>> lcim([S(1)/2, S(3)/4, S(5)/6]) |
|
15/2 |
|
>>> lcim([2*pi, 3*pi, pi, pi/2]) |
|
6*pi |
|
>>> lcim([S(1), 2*pi]) |
|
""" |
|
result = None |
|
if all(num.is_irrational for num in numbers): |
|
factorized_nums = [num.factor() for num in numbers] |
|
factors_num = [num.as_coeff_Mul() for num in factorized_nums] |
|
term = factors_num[0][1] |
|
if all(factor == term for coeff, factor in factors_num): |
|
common_term = term |
|
coeffs = [coeff for coeff, factor in factors_num] |
|
result = lcm_list(coeffs) * common_term |
|
|
|
elif all(num.is_rational for num in numbers): |
|
result = lcm_list(numbers) |
|
|
|
else: |
|
pass |
|
|
|
return result |
|
|
|
def is_convex(f, *syms, domain=S.Reals): |
|
r"""Determines the convexity of the function passed in the argument. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
syms : Tuple of :py:class:`~.Symbol` |
|
The variables with respect to which the convexity is to be determined. |
|
domain : :py:class:`~.Interval`, optional |
|
The domain over which the convexity of the function has to be checked. |
|
If unspecified, S.Reals will be the default domain. |
|
|
|
Returns |
|
======= |
|
|
|
bool |
|
The method returns ``True`` if the function is convex otherwise it |
|
returns ``False``. |
|
|
|
Raises |
|
====== |
|
|
|
NotImplementedError |
|
The check for the convexity of multivariate functions is not implemented yet. |
|
|
|
Notes |
|
===== |
|
|
|
To determine concavity of a function pass `-f` as the concerned function. |
|
To determine logarithmic convexity of a function pass `\log(f)` as |
|
concerned function. |
|
To determine logarithmic concavity of a function pass `-\log(f)` as |
|
concerned function. |
|
|
|
Currently, convexity check of multivariate functions is not handled. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import is_convex, symbols, exp, oo, Interval |
|
>>> x = symbols('x') |
|
>>> is_convex(exp(x), x) |
|
True |
|
>>> is_convex(x**3, x, domain = Interval(-1, oo)) |
|
False |
|
>>> is_convex(1/x**2, x, domain=Interval.open(0, oo)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Convex_function |
|
.. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf |
|
.. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function |
|
.. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function |
|
.. [5] https://en.wikipedia.org/wiki/Concave_function |
|
|
|
""" |
|
|
|
if len(syms) > 1: |
|
raise NotImplementedError( |
|
"The check for the convexity of multivariate functions is not implemented yet.") |
|
|
|
from sympy.solvers.inequalities import solve_univariate_inequality |
|
|
|
f = _sympify(f) |
|
var = syms[0] |
|
if any(s in domain for s in singularities(f, var)): |
|
return False |
|
|
|
condition = f.diff(var, 2) < 0 |
|
if solve_univariate_inequality(condition, var, False, domain): |
|
return False |
|
return True |
|
|
|
|
|
def stationary_points(f, symbol, domain=S.Reals): |
|
""" |
|
Returns the stationary points of a function (where derivative of the |
|
function is 0) in the given domain. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for which the stationary points are to be determined. |
|
domain : :py:class:`~.Interval` |
|
The domain over which the stationary points have to be checked. |
|
If unspecified, ``S.Reals`` will be the default domain. |
|
|
|
Returns |
|
======= |
|
|
|
Set |
|
A set of stationary points for the function. If there are no |
|
stationary point, an :py:class:`~.EmptySet` is returned. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Interval, Symbol, S, sin, pi, pprint, stationary_points |
|
>>> x = Symbol('x') |
|
|
|
>>> stationary_points(1/x, x, S.Reals) |
|
EmptySet |
|
|
|
>>> pprint(stationary_points(sin(x), x), use_unicode=False) |
|
pi 3*pi |
|
{2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers} |
|
2 2 |
|
|
|
>>> stationary_points(sin(x),x, Interval(0, 4*pi)) |
|
{pi/2, 3*pi/2, 5*pi/2, 7*pi/2} |
|
|
|
""" |
|
from sympy.solvers.solveset import solveset |
|
|
|
if domain is S.EmptySet: |
|
return S.EmptySet |
|
|
|
domain = continuous_domain(f, symbol, domain) |
|
set = solveset(diff(f, symbol), symbol, domain) |
|
|
|
return set |
|
|
|
|
|
def maximum(f, symbol, domain=S.Reals): |
|
""" |
|
Returns the maximum value of a function in the given domain. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for maximum value needs to be determined. |
|
domain : :py:class:`~.Interval` |
|
The domain over which the maximum have to be checked. |
|
If unspecified, then the global maximum is returned. |
|
|
|
Returns |
|
======= |
|
|
|
number |
|
Maximum value of the function in given domain. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Interval, Symbol, S, sin, cos, pi, maximum |
|
>>> x = Symbol('x') |
|
|
|
>>> f = -x**2 + 2*x + 5 |
|
>>> maximum(f, x, S.Reals) |
|
6 |
|
|
|
>>> maximum(sin(x), x, Interval(-pi, pi/4)) |
|
sqrt(2)/2 |
|
|
|
>>> maximum(sin(x)*cos(x), x) |
|
1/2 |
|
|
|
""" |
|
if isinstance(symbol, Symbol): |
|
if domain is S.EmptySet: |
|
raise ValueError("Maximum value not defined for empty domain.") |
|
|
|
return function_range(f, symbol, domain).sup |
|
else: |
|
raise ValueError("%s is not a valid symbol." % symbol) |
|
|
|
|
|
def minimum(f, symbol, domain=S.Reals): |
|
""" |
|
Returns the minimum value of a function in the given domain. |
|
|
|
Parameters |
|
========== |
|
|
|
f : :py:class:`~.Expr` |
|
The concerned function. |
|
symbol : :py:class:`~.Symbol` |
|
The variable for minimum value needs to be determined. |
|
domain : :py:class:`~.Interval` |
|
The domain over which the minimum have to be checked. |
|
If unspecified, then the global minimum is returned. |
|
|
|
Returns |
|
======= |
|
|
|
number |
|
Minimum value of the function in the given domain. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Interval, Symbol, S, sin, cos, minimum |
|
>>> x = Symbol('x') |
|
|
|
>>> f = x**2 + 2*x + 5 |
|
>>> minimum(f, x, S.Reals) |
|
4 |
|
|
|
>>> minimum(sin(x), x, Interval(2, 3)) |
|
sin(3) |
|
|
|
>>> minimum(sin(x)*cos(x), x) |
|
-1/2 |
|
|
|
""" |
|
if isinstance(symbol, Symbol): |
|
if domain is S.EmptySet: |
|
raise ValueError("Minimum value not defined for empty domain.") |
|
|
|
return function_range(f, symbol, domain).inf |
|
else: |
|
raise ValueError("%s is not a valid symbol." % symbol) |
|
|