peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/integrals
/laplace.py
"""Laplace Transforms""" | |
from sympy.core import S, pi, I | |
from sympy.core.add import Add | |
from sympy.core.cache import cacheit | |
from sympy.core.function import ( | |
AppliedUndef, Derivative, expand, expand_complex, expand_mul, expand_trig, | |
Lambda, WildFunction, diff) | |
from sympy.core.mul import Mul, prod | |
from sympy.core.relational import _canonical, Ge, Gt, Lt, Unequality, Eq | |
from sympy.core.sorting import ordered | |
from sympy.core.symbol import Dummy, symbols, Wild | |
from sympy.functions.elementary.complexes import ( | |
re, im, arg, Abs, polar_lift, periodic_argument) | |
from sympy.functions.elementary.exponential import exp, log | |
from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, asinh | |
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import cos, sin, atan | |
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely | |
from sympy.functions.special.delta_functions import DiracDelta, Heaviside | |
from sympy.functions.special.error_functions import erf, erfc, Ei | |
from sympy.functions.special.gamma_functions import digamma, gamma, lowergamma | |
from sympy.integrals import integrate, Integral | |
from sympy.integrals.transforms import ( | |
_simplify, IntegralTransform, IntegralTransformError) | |
from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And | |
from sympy.matrices.matrices import MatrixBase | |
from sympy.polys.matrices.linsolve import _lin_eq2dict | |
from sympy.polys.polyerrors import PolynomialError | |
from sympy.polys.polyroots import roots | |
from sympy.polys.polytools import Poly | |
from sympy.polys.rationaltools import together | |
from sympy.polys.rootoftools import RootSum | |
from sympy.utilities.exceptions import ( | |
sympy_deprecation_warning, SymPyDeprecationWarning, ignore_warnings) | |
from sympy.utilities.misc import debug, debugf | |
def _simplifyconds(expr, s, a): | |
r""" | |
Naively simplify some conditions occurring in ``expr``, | |
given that `\operatorname{Re}(s) > a`. | |
Examples | |
======== | |
>>> from sympy.integrals.laplace import _simplifyconds | |
>>> from sympy.abc import x | |
>>> from sympy import sympify as S | |
>>> _simplifyconds(abs(x**2) < 1, x, 1) | |
False | |
>>> _simplifyconds(abs(x**2) < 1, x, 2) | |
False | |
>>> _simplifyconds(abs(x**2) < 1, x, 0) | |
Abs(x**2) < 1 | |
>>> _simplifyconds(abs(1/x**2) < 1, x, 1) | |
True | |
>>> _simplifyconds(S(1) < abs(x), x, 1) | |
True | |
>>> _simplifyconds(S(1) < abs(1/x), x, 1) | |
False | |
>>> from sympy import Ne | |
>>> _simplifyconds(Ne(1, x**3), x, 1) | |
True | |
>>> _simplifyconds(Ne(1, x**3), x, 2) | |
True | |
>>> _simplifyconds(Ne(1, x**3), x, 0) | |
Ne(1, x**3) | |
""" | |
def power(ex): | |
if ex == s: | |
return 1 | |
if ex.is_Pow and ex.base == s: | |
return ex.exp | |
return None | |
def bigger(ex1, ex2): | |
""" Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. | |
Else return None. """ | |
if ex1.has(s) and ex2.has(s): | |
return None | |
if isinstance(ex1, Abs): | |
ex1 = ex1.args[0] | |
if isinstance(ex2, Abs): | |
ex2 = ex2.args[0] | |
if ex1.has(s): | |
return bigger(1/ex2, 1/ex1) | |
n = power(ex2) | |
if n is None: | |
return None | |
try: | |
if n > 0 and (Abs(ex1) <= Abs(a)**n) == S.true: | |
return False | |
if n < 0 and (Abs(ex1) >= Abs(a)**n) == S.true: | |
return True | |
except TypeError: | |
pass | |
def replie(x, y): | |
""" simplify x < y """ | |
if (not (x.is_positive or isinstance(x, Abs)) | |
or not (y.is_positive or isinstance(y, Abs))): | |
return (x < y) | |
r = bigger(x, y) | |
if r is not None: | |
return not r | |
return (x < y) | |
def replue(x, y): | |
b = bigger(x, y) | |
if b in (True, False): | |
return True | |
return Unequality(x, y) | |
def repl(ex, *args): | |
if ex in (True, False): | |
return bool(ex) | |
return ex.replace(*args) | |
from sympy.simplify.radsimp import collect_abs | |
expr = collect_abs(expr) | |
expr = repl(expr, Lt, replie) | |
expr = repl(expr, Gt, lambda x, y: replie(y, x)) | |
expr = repl(expr, Unequality, replue) | |
return S(expr) | |
def expand_dirac_delta(expr): | |
""" | |
Expand an expression involving DiractDelta to get it as a linear | |
combination of DiracDelta functions. | |
""" | |
return _lin_eq2dict(expr, expr.atoms(DiracDelta)) | |
def _laplace_transform_integration(f, t, s_, simplify=True): | |
""" The backend function for doing Laplace transforms by integration. | |
This backend assumes that the frontend has already split sums | |
such that `f` is to an addition anymore. | |
""" | |
s = Dummy('s') | |
debugf('[LT _l_t_i ] started with (%s, %s, %s)', (f, t, s)) | |
debugf('[LT _l_t_i ] and simplify=%s', (simplify, )) | |
if f.has(DiracDelta): | |
return None | |
F = integrate(f*exp(-s*t), (t, S.Zero, S.Infinity)) | |
debugf('[LT _l_t_i ] integrated: %s', (F, )) | |
if not F.has(Integral): | |
return _simplify(F.subs(s, s_), simplify), S.NegativeInfinity, S.true | |
if not F.is_Piecewise: | |
debug('[LT _l_t_i ] not piecewise.') | |
return None | |
F, cond = F.args[0] | |
if F.has(Integral): | |
debug('[LT _l_t_i ] integral in unexpected form.') | |
return None | |
def process_conds(conds): | |
""" Turn ``conds`` into a strip and auxiliary conditions. """ | |
from sympy.solvers.inequalities import _solve_inequality | |
a = S.NegativeInfinity | |
aux = S.true | |
conds = conjuncts(to_cnf(conds)) | |
p, q, w1, w2, w3, w4, w5 = symbols( | |
'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) | |
patterns = ( | |
p*Abs(arg((s + w3)*q)) < w2, | |
p*Abs(arg((s + w3)*q)) <= w2, | |
Abs(periodic_argument((s + w3)**p*q, w1)) < w2, | |
Abs(periodic_argument((s + w3)**p*q, w1)) <= w2, | |
Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) < w2, | |
Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) <= w2) | |
for c in conds: | |
a_ = S.Infinity | |
aux_ = [] | |
for d in disjuncts(c): | |
if d.is_Relational and s in d.rhs.free_symbols: | |
d = d.reversed | |
if d.is_Relational and isinstance(d, (Ge, Gt)): | |
d = d.reversedsign | |
for pat in patterns: | |
m = d.match(pat) | |
if m: | |
break | |
if m and m[q].is_positive and m[w2]/m[p] == pi/2: | |
d = -re(s + m[w3]) < 0 | |
m = d.match(p - cos(w1*Abs(arg(s*w5))*w2)*Abs(s**w3)**w4 < 0) | |
if not m: | |
m = d.match( | |
cos(p - Abs(periodic_argument(s**w1*w5, q))*w2) * | |
Abs(s**w3)**w4 < 0) | |
if not m: | |
m = d.match( | |
p - cos( | |
Abs(periodic_argument(polar_lift(s)**w1*w5, q))*w2 | |
)*Abs(s**w3)**w4 < 0) | |
if m and all(m[wild].is_positive for wild in [ | |
w1, w2, w3, w4, w5]): | |
d = re(s) > m[p] | |
d_ = d.replace( | |
re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) | |
if ( | |
not d.is_Relational or d.rel_op in ('==', '!=') | |
or d_.has(s) or not d_.has(t)): | |
aux_ += [d] | |
continue | |
soln = _solve_inequality(d_, t) | |
if not soln.is_Relational or soln.rel_op in ('==', '!='): | |
aux_ += [d] | |
continue | |
if soln.lts == t: | |
debug('[LT _l_t_i ] convergence not in half-plane.') | |
return None | |
else: | |
a_ = Min(soln.lts, a_) | |
if a_ is not S.Infinity: | |
a = Max(a_, a) | |
else: | |
aux = And(aux, Or(*aux_)) | |
return a, aux.canonical if aux.is_Relational else aux | |
conds = [process_conds(c) for c in disjuncts(cond)] | |
conds2 = [x for x in conds if x[1] != | |
S.false and x[0] is not S.NegativeInfinity] | |
if not conds2: | |
conds2 = [x for x in conds if x[1] != S.false] | |
conds = list(ordered(conds2)) | |
def cnt(expr): | |
if expr in (True, False): | |
return 0 | |
return expr.count_ops() | |
conds.sort(key=lambda x: (-x[0], cnt(x[1]))) | |
if not conds: | |
debug('[LT _l_t_i ] no convergence found.') | |
return None | |
a, aux = conds[0] # XXX is [0] always the right one? | |
def sbs(expr): | |
return expr.subs(s, s_) | |
if simplify: | |
F = _simplifyconds(F, s, a) | |
aux = _simplifyconds(aux, s, a) | |
return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) | |
def _laplace_deep_collect(f, t): | |
""" | |
This is an internal helper function that traverses through the epression | |
tree of `f(t)` and collects arguments. The purpose of it is that | |
anything like `f(w*t-1*t-c)` will be written as `f((w-1)*t-c)` such that | |
it can match `f(a*t+b)`. | |
""" | |
func = f.func | |
args = list(f.args) | |
if len(f.args) == 0: | |
return f | |
else: | |
args = [_laplace_deep_collect(arg, t) for arg in args] | |
if func.is_Add: | |
return func(*args).collect(t) | |
else: | |
return func(*args) | |
def _laplace_build_rules(): | |
""" | |
This is an internal helper function that returns the table of Laplace | |
transform rules in terms of the time variable `t` and the frequency | |
variable `s`. It is used by ``_laplace_apply_rules``. Each entry is a | |
tuple containing: | |
(time domain pattern, | |
frequency-domain replacement, | |
condition for the rule to be applied, | |
convergence plane, | |
preparation function) | |
The preparation function is a function with one argument that is applied | |
to the expression before matching. For most rules it should be | |
``_laplace_deep_collect``. | |
""" | |
t = Dummy('t') | |
s = Dummy('s') | |
a = Wild('a', exclude=[t]) | |
b = Wild('b', exclude=[t]) | |
n = Wild('n', exclude=[t]) | |
tau = Wild('tau', exclude=[t]) | |
omega = Wild('omega', exclude=[t]) | |
def dco(f): return _laplace_deep_collect(f, t) | |
debug('_laplace_build_rules is building rules') | |
laplace_transform_rules = [ | |
(a, a/s, | |
S.true, S.Zero, dco), # 4.2.1 | |
(DiracDelta(a*t-b), exp(-s*b/a)/Abs(a), | |
Or(And(a > 0, b >= 0), And(a < 0, b <= 0)), | |
S.NegativeInfinity, dco), # Not in Bateman54 | |
(DiracDelta(a*t-b), S(0), | |
Or(And(a < 0, b >= 0), And(a > 0, b <= 0)), | |
S.NegativeInfinity, dco), # Not in Bateman54 | |
(Heaviside(a*t-b), exp(-s*b/a)/s, | |
And(a > 0, b > 0), S.Zero, dco), # 4.4.1 | |
(Heaviside(a*t-b), (1-exp(-s*b/a))/s, | |
And(a < 0, b < 0), S.Zero, dco), # 4.4.1 | |
(Heaviside(a*t-b), 1/s, | |
And(a > 0, b <= 0), S.Zero, dco), # 4.4.1 | |
(Heaviside(a*t-b), 0, | |
And(a < 0, b > 0), S.Zero, dco), # 4.4.1 | |
(t, 1/s**2, | |
S.true, S.Zero, dco), # 4.2.3 | |
(1/(a*t+b), -exp(-b/a*s)*Ei(-b/a*s)/a, | |
Abs(arg(b/a)) < pi, S.Zero, dco), # 4.2.6 | |
(1/sqrt(a*t+b), sqrt(a*pi/s)*exp(b/a*s)*erfc(sqrt(b/a*s))/a, | |
Abs(arg(b/a)) < pi, S.Zero, dco), # 4.2.18 | |
((a*t+b)**(-S(3)/2), | |
2*b**(-S(1)/2)-2*(pi*s/a)**(S(1)/2)*exp(b/a*s) * erfc(sqrt(b/a*s))/a, | |
Abs(arg(b/a)) < pi, S.Zero, dco), # 4.2.20 | |
(sqrt(t)/(t+b), sqrt(pi/s)-pi*sqrt(b)*exp(b*s)*erfc(sqrt(b*s)), | |
Abs(arg(b)) < pi, S.Zero, dco), # 4.2.22 | |
(1/(a*sqrt(t) + t**(3/2)), pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)), | |
S.true, S.Zero, dco), # Not in Bateman54 | |
(t**n, gamma(n+1)/s**(n+1), | |
n > -1, S.Zero, dco), # 4.3.1 | |
((a*t+b)**n, lowergamma(n+1, b/a*s)*exp(-b/a*s)/s**(n+1)/a, | |
And(n > -1, Abs(arg(b/a)) < pi), S.Zero, dco), # 4.3.4 | |
(t**n/(t+a), a**n*gamma(n+1)*lowergamma(-n, a*s), | |
And(n > -1, Abs(arg(a)) < pi), S.Zero, dco), # 4.3.7 | |
(exp(a*t-tau), exp(-tau)/(s-a), | |
S.true, re(a), dco), # 4.5.1 | |
(t*exp(a*t-tau), exp(-tau)/(s-a)**2, | |
S.true, re(a), dco), # 4.5.2 | |
(t**n*exp(a*t), gamma(n+1)/(s-a)**(n+1), | |
re(n) > -1, re(a), dco), # 4.5.3 | |
(exp(-a*t**2), sqrt(pi/4/a)*exp(s**2/4/a)*erfc(s/sqrt(4*a)), | |
re(a) > 0, S.Zero, dco), # 4.5.21 | |
(t*exp(-a*t**2), | |
1/(2*a)-2/sqrt(pi)/(4*a)**(S(3)/2)*s*erfc(s/sqrt(4*a)), | |
re(a) > 0, S.Zero, dco), # 4.5.22 | |
(exp(-a/t), 2*sqrt(a/s)*besselk(1, 2*sqrt(a*s)), | |
re(a) >= 0, S.Zero, dco), # 4.5.25 | |
(sqrt(t)*exp(-a/t), | |
S(1)/2*sqrt(pi/s**3)*(1+2*sqrt(a*s))*exp(-2*sqrt(a*s)), | |
re(a) >= 0, S.Zero, dco), # 4.5.26 | |
(exp(-a/t)/sqrt(t), sqrt(pi/s)*exp(-2*sqrt(a*s)), | |
re(a) >= 0, S.Zero, dco), # 4.5.27 | |
(exp(-a/t)/(t*sqrt(t)), sqrt(pi/a)*exp(-2*sqrt(a*s)), | |
re(a) > 0, S.Zero, dco), # 4.5.28 | |
(t**n*exp(-a/t), 2*(a/s)**((n+1)/2)*besselk(n+1, 2*sqrt(a*s)), | |
re(a) > 0, S.Zero, dco), # 4.5.29 | |
(exp(-2*sqrt(a*t)), | |
s**(-1)-sqrt(pi*a)*s**(-S(3)/2)*exp(a/s) * erfc(sqrt(a/s)), | |
Abs(arg(a)) < pi, S.Zero, dco), # 4.5.31 | |
(exp(-2*sqrt(a*t))/sqrt(t), (pi/s)**(S(1)/2)*exp(a/s)*erfc(sqrt(a/s)), | |
Abs(arg(a)) < pi, S.Zero, dco), # 4.5.33 | |
(log(a*t), -log(exp(S.EulerGamma)*s/a)/s, | |
a > 0, S.Zero, dco), # 4.6.1 | |
(log(1+a*t), -exp(s/a)/s*Ei(-s/a), | |
Abs(arg(a)) < pi, S.Zero, dco), # 4.6.4 | |
(log(a*t+b), (log(b)-exp(s/b/a)/s*a*Ei(-s/b))/s*a, | |
And(a > 0, Abs(arg(b)) < pi), S.Zero, dco), # 4.6.5 | |
(log(t)/sqrt(t), -sqrt(pi/s)*log(4*s*exp(S.EulerGamma)), | |
S.true, S.Zero, dco), # 4.6.9 | |
(t**n*log(t), gamma(n+1)*s**(-n-1)*(digamma(n+1)-log(s)), | |
re(n) > -1, S.Zero, dco), # 4.6.11 | |
(log(a*t)**2, (log(exp(S.EulerGamma)*s/a)**2+pi**2/6)/s, | |
a > 0, S.Zero, dco), # 4.6.13 | |
(sin(omega*t), omega/(s**2+omega**2), | |
S.true, Abs(im(omega)), dco), # 4,7,1 | |
(Abs(sin(omega*t)), omega/(s**2+omega**2)*coth(pi*s/2/omega), | |
omega > 0, S.Zero, dco), # 4.7.2 | |
(sin(omega*t)/t, atan(omega/s), | |
S.true, Abs(im(omega)), dco), # 4.7.16 | |
(sin(omega*t)**2/t, log(1+4*omega**2/s**2)/4, | |
S.true, 2*Abs(im(omega)), dco), # 4.7.17 | |
(sin(omega*t)**2/t**2, | |
omega*atan(2*omega/s)-s*log(1+4*omega**2/s**2)/4, | |
S.true, 2*Abs(im(omega)), dco), # 4.7.20 | |
(sin(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(-a/s), | |
S.true, S.Zero, dco), # 4.7.32 | |
(sin(2*sqrt(a*t))/t, pi*erf(sqrt(a/s)), | |
S.true, S.Zero, dco), # 4.7.34 | |
(cos(omega*t), s/(s**2+omega**2), | |
S.true, Abs(im(omega)), dco), # 4.7.43 | |
(cos(omega*t)**2, (s**2+2*omega**2)/(s**2+4*omega**2)/s, | |
S.true, 2*Abs(im(omega)), dco), # 4.7.45 | |
(sqrt(t)*cos(2*sqrt(a*t)), sqrt(pi)/2*s**(-S(5)/2)*(s-2*a)*exp(-a/s), | |
S.true, S.Zero, dco), # 4.7.66 | |
(cos(2*sqrt(a*t))/sqrt(t), sqrt(pi/s)*exp(-a/s), | |
S.true, S.Zero, dco), # 4.7.67 | |
(sin(a*t)*sin(b*t), 2*a*b*s/(s**2+(a+b)**2)/(s**2+(a-b)**2), | |
S.true, Abs(im(a))+Abs(im(b)), dco), # 4.7.78 | |
(cos(a*t)*sin(b*t), b*(s**2-a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), | |
S.true, Abs(im(a))+Abs(im(b)), dco), # 4.7.79 | |
(cos(a*t)*cos(b*t), s*(s**2+a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), | |
S.true, Abs(im(a))+Abs(im(b)), dco), # 4.7.80 | |
(sinh(a*t), a/(s**2-a**2), | |
S.true, Abs(re(a)), dco), # 4.9.1 | |
(cosh(a*t), s/(s**2-a**2), | |
S.true, Abs(re(a)), dco), # 4.9.2 | |
(sinh(a*t)**2, 2*a**2/(s**3-4*a**2*s), | |
S.true, 2*Abs(re(a)), dco), # 4.9.3 | |
(cosh(a*t)**2, (s**2-2*a**2)/(s**3-4*a**2*s), | |
S.true, 2*Abs(re(a)), dco), # 4.9.4 | |
(sinh(a*t)/t, log((s+a)/(s-a))/2, | |
S.true, Abs(re(a)), dco), # 4.9.12 | |
(t**n*sinh(a*t), gamma(n+1)/2*((s-a)**(-n-1)-(s+a)**(-n-1)), | |
n > -2, Abs(a), dco), # 4.9.18 | |
(t**n*cosh(a*t), gamma(n+1)/2*((s-a)**(-n-1)+(s+a)**(-n-1)), | |
n > -1, Abs(a), dco), # 4.9.19 | |
(sinh(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(a/s), | |
S.true, S.Zero, dco), # 4.9.34 | |
(cosh(2*sqrt(a*t)), 1/s+sqrt(pi*a)/s/sqrt(s)*exp(a/s)*erf(sqrt(a/s)), | |
S.true, S.Zero, dco), # 4.9.35 | |
( | |
sqrt(t)*sinh(2*sqrt(a*t)), | |
pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a) * | |
exp(a/s)*erf(sqrt(a/s))-a**(S(1)/2)*s**(-2), | |
S.true, S.Zero, dco), # 4.9.36 | |
(sqrt(t)*cosh(2*sqrt(a*t)), pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s), | |
S.true, S.Zero, dco), # 4.9.37 | |
(sinh(2*sqrt(a*t))/sqrt(t), | |
pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s) * erf(sqrt(a/s)), | |
S.true, S.Zero, dco), # 4.9.38 | |
(cosh(2*sqrt(a*t))/sqrt(t), pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s), | |
S.true, S.Zero, dco), # 4.9.39 | |
(sinh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)-1), | |
S.true, S.Zero, dco), # 4.9.40 | |
(cosh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)+1), | |
S.true, S.Zero, dco), # 4.9.41 | |
(erf(a*t), exp(s**2/(2*a)**2)*erfc(s/(2*a))/s, | |
4*Abs(arg(a)) < pi, S.Zero, dco), # 4.12.2 | |
(erf(sqrt(a*t)), sqrt(a)/sqrt(s+a)/s, | |
S.true, Max(S.Zero, -re(a)), dco), # 4.12.4 | |
(exp(a*t)*erf(sqrt(a*t)), sqrt(a)/sqrt(s)/(s-a), | |
S.true, Max(S.Zero, re(a)), dco), # 4.12.5 | |
(erf(sqrt(a/t)/2), (1-exp(-sqrt(a*s)))/s, | |
re(a) > 0, S.Zero, dco), # 4.12.6 | |
(erfc(sqrt(a*t)), (sqrt(s+a)-sqrt(a))/sqrt(s+a)/s, | |
S.true, -re(a), dco), # 4.12.9 | |
(exp(a*t)*erfc(sqrt(a*t)), 1/(s+sqrt(a*s)), | |
S.true, S.Zero, dco), # 4.12.10 | |
(erfc(sqrt(a/t)/2), exp(-sqrt(a*s))/s, | |
re(a) > 0, S.Zero, dco), # 4.2.11 | |
(besselj(n, a*t), a**n/(sqrt(s**2+a**2)*(s+sqrt(s**2+a**2))**n), | |
re(n) > -1, Abs(im(a)), dco), # 4.14.1 | |
(t**b*besselj(n, a*t), | |
2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2+a**2)**(-n-S.Half), | |
And(re(n) > -S.Half, Eq(b, n)), Abs(im(a)), dco), # 4.14.7 | |
(t**b*besselj(n, a*t), | |
2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2+a**2)**(-n-S(3)/2), | |
And(re(n) > -1, Eq(b, n+1)), Abs(im(a)), dco), # 4.14.8 | |
(besselj(0, 2*sqrt(a*t)), exp(-a/s)/s, | |
S.true, S.Zero, dco), # 4.14.25 | |
(t**(b)*besselj(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(-a/s), | |
And(re(n) > -1, Eq(b, n*S.Half)), S.Zero, dco), # 4.14.30 | |
(besselj(0, a*sqrt(t**2+b*t)), | |
exp(b*s-b*sqrt(s**2+a**2))/sqrt(s**2+a**2), | |
Abs(arg(b)) < pi, Abs(im(a)), dco), # 4.15.19 | |
(besseli(n, a*t), a**n/(sqrt(s**2-a**2)*(s+sqrt(s**2-a**2))**n), | |
re(n) > -1, Abs(re(a)), dco), # 4.16.1 | |
(t**b*besseli(n, a*t), | |
2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2-a**2)**(-n-S.Half), | |
And(re(n) > -S.Half, Eq(b, n)), Abs(re(a)), dco), # 4.16.6 | |
(t**b*besseli(n, a*t), | |
2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2-a**2)**(-n-S(3)/2), | |
And(re(n) > -1, Eq(b, n+1)), Abs(re(a)), dco), # 4.16.7 | |
(t**(b)*besseli(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(a/s), | |
And(re(n) > -1, Eq(b, n*S.Half)), S.Zero, dco), # 4.16.18 | |
(bessely(0, a*t), -2/pi*asinh(s/a)/sqrt(s**2+a**2), | |
S.true, Abs(im(a)), dco), # 4.15.44 | |
(besselk(0, a*t), log((s + sqrt(s**2-a**2))/a)/(sqrt(s**2-a**2)), | |
S.true, -re(a), dco) # 4.16.23 | |
] | |
return laplace_transform_rules, t, s | |
def _laplace_rule_timescale(f, t, s): | |
""" | |
This function applies the time-scaling rule of the Laplace transform in | |
a straight-forward way. For example, if it gets ``(f(a*t), t, s)``, it will | |
compute ``LaplaceTransform(f(t)/a, t, s/a)`` if ``a>0``. | |
""" | |
a = Wild('a', exclude=[t]) | |
g = WildFunction('g', nargs=1) | |
ma1 = f.match(g) | |
if ma1: | |
arg = ma1[g].args[0].collect(t) | |
ma2 = arg.match(a*t) | |
if ma2 and ma2[a].is_positive and ma2[a] != 1: | |
debug('_laplace_apply_prog rules match:') | |
debugf(' f: %s _ %s, %s )', (f, ma1, ma2)) | |
debug(' rule: time scaling (4.1.4)') | |
r, pr, cr = _laplace_transform(1/ma2[a]*ma1[g].func(t), | |
t, s/ma2[a], simplify=False) | |
return (r, pr, cr) | |
return None | |
def _laplace_rule_heaviside(f, t, s): | |
""" | |
This function deals with time-shifted Heaviside step functions. If the time | |
shift is positive, it applies the time-shift rule of the Laplace transform. | |
For example, if it gets ``(Heaviside(t-a)*f(t), t, s)``, it will compute | |
``exp(-a*s)*LaplaceTransform(f(t+a), t, s)``. | |
If the time shift is negative, the Heaviside function is simply removed | |
as it means nothing to the Laplace transform. | |
The function does not remove a factor ``Heaviside(t)``; this is done by | |
the simple rules. | |
""" | |
a = Wild('a', exclude=[t]) | |
y = Wild('y') | |
g = Wild('g') | |
ma1 = f.match(Heaviside(y)*g) | |
if ma1: | |
ma2 = ma1[y].match(t-a) | |
if ma2 and ma2[a].is_positive: | |
debug('_laplace_apply_prog_rules match:') | |
debugf(' f: %s ( %s, %s )', (f, ma1, ma2)) | |
debug(' rule: time shift (4.1.4)') | |
r, pr, cr = _laplace_transform(ma1[g].subs(t, t+ma2[a]), t, s, | |
simplify=False) | |
return (exp(-ma2[a]*s)*r, pr, cr) | |
if ma2 and ma2[a].is_negative: | |
debug('_laplace_apply_prog_rules match:') | |
debugf(' f: %s ( %s, %s )', (f, ma1, ma2)) | |
debug(' rule: Heaviside factor, negative time shift (4.1.4)') | |
r, pr, cr = _laplace_transform(ma1[g], t, s, simplify=False) | |
return (r, pr, cr) | |
return None | |
def _laplace_rule_exp(f, t, s): | |
""" | |
If this function finds a factor ``exp(a*t)``, it applies the | |
frequency-shift rule of the Laplace transform and adjusts the convergence | |
plane accordingly. For example, if it gets ``(exp(-a*t)*f(t), t, s)``, it | |
will compute ``LaplaceTransform(f(t), t, s+a)``. | |
""" | |
a = Wild('a', exclude=[t]) | |
y = Wild('y') | |
z = Wild('z') | |
ma1 = f.match(exp(y)*z) | |
if ma1: | |
ma2 = ma1[y].collect(t).match(a*t) | |
if ma2: | |
debug('_laplace_apply_prog_rules match:') | |
debugf(' f: %s ( %s, %s )', (f, ma1, ma2)) | |
debug(' rule: multiply with exp (4.1.5)') | |
r, pr, cr = _laplace_transform(ma1[z], t, s-ma2[a], | |
simplify=False) | |
return (r, pr+re(ma2[a]), cr) | |
return None | |
def _laplace_rule_delta(f, t, s): | |
""" | |
If this function finds a factor ``DiracDelta(b*t-a)``, it applies the | |
masking property of the delta distribution. For example, if it gets | |
``(DiracDelta(t-a)*f(t), t, s)``, it will return | |
``(f(a)*exp(-a*s), -a, True)``. | |
""" | |
# This rule is not in Bateman54 | |
a = Wild('a', exclude=[t]) | |
b = Wild('b', exclude=[t]) | |
y = Wild('y') | |
z = Wild('z') | |
ma1 = f.match(DiracDelta(y)*z) | |
if ma1 and not ma1[z].has(DiracDelta): | |
ma2 = ma1[y].collect(t).match(b*t-a) | |
if ma2: | |
debug('_laplace_apply_prog_rules match:') | |
debugf(' f: %s ( %s, %s )', (f, ma1, ma2)) | |
debug(' rule: multiply with DiracDelta') | |
loc = ma2[a]/ma2[b] | |
if re(loc) >= 0 and im(loc) == 0: | |
r = exp(-ma2[a]/ma2[b]*s)*ma1[z].subs(t, ma2[a]/ma2[b])/ma2[b] | |
return (r, S.NegativeInfinity, S.true) | |
else: | |
return (0, S.NegativeInfinity, S.true) | |
if ma1[y].is_polynomial(t): | |
ro = roots(ma1[y], t) | |
if roots is not {} and set(ro.values()) == {1}: | |
slope = diff(ma1[y], t) | |
r = Add( | |
*[exp(-x*s)*ma1[z].subs(t, s)/slope.subs(t, x) | |
for x in list(ro.keys()) if im(x) == 0 and re(x) >= 0]) | |
return (r, S.NegativeInfinity, S.true) | |
return None | |
def _laplace_trig_split(fn): | |
""" | |
Helper function for `_laplace_rule_trig`. This function returns two terms | |
`f` and `g`. `f` contains all product terms with sin, cos, sinh, cosh in | |
them; `g` contains everything else. | |
""" | |
trigs = [S.One] | |
other = [S.One] | |
for term in Mul.make_args(fn): | |
if term.has(sin, cos, sinh, cosh, exp): | |
trigs.append(term) | |
else: | |
other.append(term) | |
f = Mul(*trigs) | |
g = Mul(*other) | |
return f, g | |
def _laplace_trig_expsum(f, t): | |
""" | |
Helper function for `_laplace_rule_trig`. This function expects the `f` | |
from `_laplace_trig_split`. It returns two lists `xm` and `xn`. `xm` is | |
a list of dictionaries with keys `k` and `a` representing a function | |
`k*exp(a*t)`. `xn` is a list of all terms that cannot be brought into | |
that form, which may happen, e.g., when a trigonometric function has | |
another function in its argument. | |
""" | |
m = Wild('m') | |
p = Wild('p', exclude=[t]) | |
xm = [] | |
xn = [] | |
x1 = f.rewrite(exp).expand() | |
for term in Add.make_args(x1): | |
if not term.has(t): | |
xm.append({'k': term, 'a': 0, re: 0, im: 0}) | |
continue | |
term = term.powsimp(combine='exp') | |
if (r := term.match(p*exp(m))) is not None: | |
if (mp := r[m].as_poly(t)) is not None: | |
mc = mp.all_coeffs() | |
if len(mc) == 2: | |
xm.append({ | |
'k': r[p]*exp(mc[1]), 'a': mc[0], | |
re: re(mc[0]), im: im(mc[0])}) | |
else: | |
xn.append(term) | |
else: | |
xn.append(term) | |
else: | |
xn.append(term) | |
return xm, xn | |
def _laplace_trig_ltex(xm, t, s): | |
""" | |
Helper function for `_laplace_rule_trig`. This function takes the list of | |
exponentials `xm` from `_laplace_trig_expsum` and simplifies complex | |
conjugate and real symmetric poles. It returns the result as a sum and | |
the convergence plane. | |
""" | |
results = [] | |
planes = [] | |
def _simpc(coeffs): | |
nc = coeffs.copy() | |
for k in range(len(nc)): | |
ri = nc[k].as_real_imag() | |
if ri[0].has(im): | |
nc[k] = nc[k].rewrite(cos) | |
else: | |
nc[k] = (ri[0] + I*ri[1]).rewrite(cos) | |
return nc | |
def _quadpole(t1, k1, k2, k3, s): | |
a, k0, a_r, a_i = t1['a'], t1['k'], t1[re], t1[im] | |
nc = [ | |
k0 + k1 + k2 + k3, | |
a*(k0 + k1 - k2 - k3) - 2*I*a_i*k1 + 2*I*a_i*k2, | |
( | |
a**2*(-k0 - k1 - k2 - k3) + | |
a*(4*I*a_i*k0 + 4*I*a_i*k3) + | |
4*a_i**2*k0 + 4*a_i**2*k3), | |
( | |
a**3*(-k0 - k1 + k2 + k3) + | |
a**2*(4*I*a_i*k0 + 2*I*a_i*k1 - 2*I*a_i*k2 - 4*I*a_i*k3) + | |
a*(4*a_i**2*k0 - 4*a_i**2*k3)) | |
] | |
dc = [ | |
S.One, S.Zero, 2*a_i**2 - 2*a_r**2, | |
S.Zero, a_i**4 + 2*a_i**2*a_r**2 + a_r**4] | |
n = Add( | |
*[x*s**y for x, y in zip(_simpc(nc), range(len(nc))[::-1])]) | |
d = Add( | |
*[x*s**y for x, y in zip(dc, range(len(dc))[::-1])]) | |
debugf(' quadpole: (%s) / (%s)', (n, d)) | |
return n/d | |
def _ccpole(t1, k1, s): | |
a, k0, a_r, a_i = t1['a'], t1['k'], t1[re], t1[im] | |
nc = [k0 + k1, -a*k0 - a*k1 + 2*I*a_i*k0] | |
dc = [S.One, -2*a_r, a_i**2 + a_r**2] | |
n = Add( | |
*[x*s**y for x, y in zip(_simpc(nc), range(len(nc))[::-1])]) | |
d = Add( | |
*[x*s**y for x, y in zip(dc, range(len(dc))[::-1])]) | |
debugf(' ccpole: (%s) / (%s)', (n, d)) | |
return n/d | |
def _rspole(t1, k2, s): | |
a, k0, a_r, a_i = t1['a'], t1['k'], t1[re], t1[im] | |
nc = [k0 + k2, a*k0 - a*k2 - 2*I*a_i*k0] | |
dc = [S.One, -2*I*a_i, -a_i**2 - a_r**2] | |
n = Add( | |
*[x*s**y for x, y in zip(_simpc(nc), range(len(nc))[::-1])]) | |
d = Add( | |
*[x*s**y for x, y in zip(dc, range(len(dc))[::-1])]) | |
debugf(' rspole: (%s) / (%s)', (n, d)) | |
return n/d | |
def _sypole(t1, k3, s): | |
a, k0 = t1['a'], t1['k'] | |
nc = [k0 + k3, a*(k0 - k3)] | |
dc = [S.One, S.Zero, -a**2] | |
n = Add( | |
*[x*s**y for x, y in zip(_simpc(nc), range(len(nc))[::-1])]) | |
d = Add( | |
*[x*s**y for x, y in zip(dc, range(len(dc))[::-1])]) | |
debugf(' sypole: (%s) / (%s)', (n, d)) | |
return n/d | |
def _simplepole(t1, s): | |
a, k0 = t1['a'], t1['k'] | |
n = k0 | |
d = s - a | |
debugf(' simplepole: (%s) / (%s)', (n, d)) | |
return n/d | |
while len(xm) > 0: | |
t1 = xm.pop() | |
i_imagsym = None | |
i_realsym = None | |
i_pointsym = None | |
# The following code checks all remaining poles. If t1 is a pole at | |
# a+b*I, then we check for a-b*I, -a+b*I, and -a-b*I, and | |
# assign the respective indices to i_imagsym, i_realsym, i_pointsym. | |
# -a-b*I / i_pointsym only applies if both a and b are != 0. | |
for i in range(len(xm)): | |
real_eq = t1[re] == xm[i][re] | |
realsym = t1[re] == -xm[i][re] | |
imag_eq = t1[im] == xm[i][im] | |
imagsym = t1[im] == -xm[i][im] | |
if realsym and imagsym and t1[re] != 0 and t1[im] != 0: | |
i_pointsym = i | |
elif realsym and imag_eq and t1[re] != 0: | |
i_realsym = i | |
elif real_eq and imagsym and t1[im] != 0: | |
i_imagsym = i | |
# The next part looks for four possible pole constellations: | |
# quad: a+b*I, a-b*I, -a+b*I, -a-b*I | |
# cc: a+b*I, a-b*I (a may be zero) | |
# quad: a+b*I, -a+b*I (b may be zero) | |
# point: a+b*I, -a-b*I (a!=0 and b!=0 is needed, but that has been | |
# asserted when finding i_pointsym above.) | |
# If none apply, then t1 is a simple pole. | |
if ( | |
i_imagsym is not None and i_realsym is not None | |
and i_pointsym is not None): | |
results.append( | |
_quadpole(t1, | |
xm[i_imagsym]['k'], xm[i_realsym]['k'], | |
xm[i_pointsym]['k'], s)) | |
planes.append(Abs(re(t1['a']))) | |
# The three additional poles have now been used; to pop them | |
# easily we have to do it from the back. | |
indices_to_pop = [i_imagsym, i_realsym, i_pointsym] | |
indices_to_pop.sort(reverse=True) | |
for i in indices_to_pop: | |
xm.pop(i) | |
elif i_imagsym is not None: | |
results.append(_ccpole(t1, xm[i_imagsym]['k'], s)) | |
planes.append(t1[re]) | |
xm.pop(i_imagsym) | |
elif i_realsym is not None: | |
results.append(_rspole(t1, xm[i_realsym]['k'], s)) | |
planes.append(Abs(t1[re])) | |
xm.pop(i_realsym) | |
elif i_pointsym is not None: | |
results.append(_sypole(t1, xm[i_pointsym]['k'], s)) | |
planes.append(Abs(t1[re])) | |
xm.pop(i_pointsym) | |
else: | |
results.append(_simplepole(t1, s)) | |
planes.append(t1[re]) | |
return Add(*results), Max(*planes) | |
def _laplace_rule_trig(fn, t_, s, doit=True, **hints): | |
""" | |
This rule covers trigonometric factors by splitting everything into a | |
sum of exponential functions and collecting complex conjugate poles and | |
real symmetric poles. | |
""" | |
t = Dummy('t', real=True) | |
if not fn.has(sin, cos, sinh, cosh): | |
return None | |
debugf('_laplace_rule_trig: (%s, %s, %s)', (fn, t_, s)) | |
f, g = _laplace_trig_split(fn.subs(t_, t)) | |
debugf(' f = %s\n g = %s', (f, g)) | |
xm, xn = _laplace_trig_expsum(f, t) | |
debugf(' xm = %s\n xn = %s', (xm, xn)) | |
if len(xn) > 0: | |
# not implemented yet | |
debug(' --> xn is not empty; giving up.') | |
return None | |
if not g.has(t): | |
r, p = _laplace_trig_ltex(xm, t, s) | |
return g*r, p, S.true | |
else: | |
# Just transform `g` and make frequency-shifted copies | |
planes = [] | |
results = [] | |
G, G_plane, G_cond = _laplace_transform(g, t, s) | |
for x1 in xm: | |
results.append(x1['k']*G.subs(s, s-x1['a'])) | |
planes.append(G_plane+re(x1['a'])) | |
return Add(*results).subs(t, t_), Max(*planes), G_cond | |
def _laplace_rule_diff(f, t, s, doit=True, **hints): | |
""" | |
This function looks for derivatives in the time domain and replaces it | |
by factors of `s` and initial conditions in the frequency domain. For | |
example, if it gets ``(diff(f(t), t), t, s)``, it will compute | |
``s*LaplaceTransform(f(t), t, s) - f(0)``. | |
""" | |
a = Wild('a', exclude=[t]) | |
n = Wild('n', exclude=[t]) | |
g = WildFunction('g') | |
ma1 = f.match(a*Derivative(g, (t, n))) | |
if ma1 and ma1[n].is_integer: | |
m = [z.has(t) for z in ma1[g].args] | |
if sum(m) == 1: | |
debug('_laplace_apply_rules match:') | |
debugf(' f, n: %s, %s', (f, ma1[n])) | |
debug(' rule: time derivative (4.1.8)') | |
d = [] | |
for k in range(ma1[n]): | |
if k == 0: | |
y = ma1[g].subs(t, 0) | |
else: | |
y = Derivative(ma1[g], (t, k)).subs(t, 0) | |
d.append(s**(ma1[n]-k-1)*y) | |
r, pr, cr = _laplace_transform(ma1[g], t, s, simplify=False) | |
return (ma1[a]*(s**ma1[n]*r - Add(*d)), pr, cr) | |
return None | |
def _laplace_rule_sdiff(f, t, s, doit=True, **hints): | |
""" | |
This function looks for multiplications with polynoimials in `t` as they | |
correspond to differentiation in the frequency domain. For example, if it | |
gets ``(t*f(t), t, s)``, it will compute | |
``-Derivative(LaplaceTransform(f(t), t, s), s)``. | |
""" | |
if f.is_Mul: | |
pfac = [1] | |
ofac = [1] | |
for fac in Mul.make_args(f): | |
if fac.is_polynomial(t): | |
pfac.append(fac) | |
else: | |
ofac.append(fac) | |
if len(pfac) > 1: | |
pex = prod(pfac) | |
pc = Poly(pex, t).all_coeffs() | |
N = len(pc) | |
if N > 1: | |
debug('_laplace_apply_rules match:') | |
debugf(' f, n: %s, %s', (f, pfac)) | |
debug(' rule: frequency derivative (4.1.6)') | |
oex = prod(ofac) | |
r_, p_, c_ = _laplace_transform(oex, t, s, simplify=False) | |
deri = [r_] | |
d1 = False | |
try: | |
d1 = -diff(deri[-1], s) | |
except ValueError: | |
d1 = False | |
if r_.has(LaplaceTransform): | |
for k in range(N-1): | |
deri.append((-1)**(k+1)*Derivative(r_, s, k+1)) | |
else: | |
if d1: | |
deri.append(d1) | |
for k in range(N-2): | |
deri.append(-diff(deri[-1], s)) | |
if d1: | |
r = Add(*[pc[N-n-1]*deri[n] for n in range(N)]) | |
return (r, p_, c_) | |
return None | |
def _laplace_expand(f, t, s, doit=True, **hints): | |
""" | |
This function tries to expand its argument with successively stronger | |
methods: first it will expand on the top level, then it will expand any | |
multiplications in depth, then it will try all avilable expansion methods, | |
and finally it will try to expand trigonometric functions. | |
If it can expand, it will then compute the Laplace transform of the | |
expanded term. | |
""" | |
if f.is_Add: | |
return None | |
r = expand(f, deep=False) | |
if r.is_Add: | |
return _laplace_transform(r, t, s, simplify=False) | |
r = expand_mul(f) | |
if r.is_Add: | |
return _laplace_transform(r, t, s, simplify=False) | |
r = expand(f) | |
if r.is_Add: | |
return _laplace_transform(r, t, s, simplify=False) | |
if r != f: | |
return _laplace_transform(r, t, s, simplify=False) | |
r = expand(expand_trig(f)) | |
if r.is_Add: | |
return _laplace_transform(r, t, s, simplify=False) | |
return None | |
def _laplace_apply_prog_rules(f, t, s): | |
""" | |
This function applies all program rules and returns the result if one | |
of them gives a result. | |
""" | |
prog_rules = [_laplace_rule_heaviside, _laplace_rule_delta, | |
_laplace_rule_timescale, _laplace_rule_exp, | |
_laplace_rule_trig, | |
_laplace_rule_diff, _laplace_rule_sdiff] | |
for p_rule in prog_rules: | |
if (L := p_rule(f, t, s)) is not None: | |
return L | |
return None | |
def _laplace_apply_simple_rules(f, t, s): | |
""" | |
This function applies all simple rules and returns the result if one | |
of them gives a result. | |
""" | |
simple_rules, t_, s_ = _laplace_build_rules() | |
prep_old = '' | |
prep_f = '' | |
for t_dom, s_dom, check, plane, prep in simple_rules: | |
if prep_old != prep: | |
prep_f = prep(f.subs({t: t_})) | |
prep_old = prep | |
ma = prep_f.match(t_dom) | |
if ma: | |
try: | |
c = check.xreplace(ma) | |
except TypeError: | |
# This may happen if the time function has imaginary | |
# numbers in it. Then we give up. | |
continue | |
if c == S.true: | |
debug('_laplace_apply_simple_rules match:') | |
debugf(' f: %s', (f,)) | |
debugf(' rule: %s o---o %s', (t_dom, s_dom)) | |
debugf(' match: %s', (ma, )) | |
return (s_dom.xreplace(ma).subs({s_: s}), | |
plane.xreplace(ma), S.true) | |
return None | |
def _laplace_transform(fn, t_, s_, simplify=True): | |
""" | |
Front-end function of the Laplace transform. It tries to apply all known | |
rules recursively, and if everything else fails, it tries to integrate. | |
""" | |
debugf('[LT _l_t] (%s, %s, %s)', (fn, t_, s_)) | |
terms = Add.make_args(fn) | |
terms_s = [] | |
planes = [] | |
conditions = [] | |
for ff in terms: | |
k, ft = ff.as_independent(t_, as_Add=False) | |
if (r := _laplace_apply_simple_rules(ft, t_, s_)) is not None: | |
pass | |
elif (r := _laplace_apply_prog_rules(ft, t_, s_)) is not None: | |
pass | |
elif (r := _laplace_expand(ft, t_, s_)) is not None: | |
pass | |
elif any(undef.has(t_) for undef in ft.atoms(AppliedUndef)): | |
# If there are undefined functions f(t) then integration is | |
# unlikely to do anything useful so we skip it and given an | |
# unevaluated LaplaceTransform. | |
r = (LaplaceTransform(ft, t_, s_), S.NegativeInfinity, True) | |
elif (r := _laplace_transform_integration( | |
ft, t_, s_, simplify=simplify)) is not None: | |
pass | |
else: | |
r = (LaplaceTransform(ft, t_, s_), S.NegativeInfinity, True) | |
(ri_, pi_, ci_) = r | |
terms_s.append(k*ri_) | |
planes.append(pi_) | |
conditions.append(ci_) | |
result = Add(*terms_s) | |
if simplify: | |
result = result.simplify(doit=False) | |
plane = Max(*planes) | |
condition = And(*conditions) | |
return result, plane, condition | |
class LaplaceTransform(IntegralTransform): | |
""" | |
Class representing unevaluated Laplace transforms. | |
For usage of this class, see the :class:`IntegralTransform` docstring. | |
For how to compute Laplace transforms, see the :func:`laplace_transform` | |
docstring. | |
If this is called with ``.doit()``, it returns the Laplace transform as an | |
expression. If it is called with ``.doit(noconds=False)``, it returns a | |
tuple containing the same expression, a convergence plane, and conditions. | |
""" | |
_name = 'Laplace' | |
def _compute_transform(self, f, t, s, **hints): | |
_simplify = hints.get('simplify', False) | |
LT = _laplace_transform_integration(f, t, s, simplify=_simplify) | |
return LT | |
def _as_integral(self, f, t, s): | |
return Integral(f*exp(-s*t), (t, S.Zero, S.Infinity)) | |
def _collapse_extra(self, extra): | |
conds = [] | |
planes = [] | |
for plane, cond in extra: | |
conds.append(cond) | |
planes.append(plane) | |
cond = And(*conds) | |
plane = Max(*planes) | |
if cond == S.false: | |
raise IntegralTransformError( | |
'Laplace', None, 'No combined convergence.') | |
return plane, cond | |
def doit(self, **hints): | |
""" | |
Try to evaluate the transform in closed form. | |
Explanation | |
=========== | |
Standard hints are the following: | |
- ``noconds``: if True, do not return convergence conditions. The | |
default setting is `True`. | |
- ``simplify``: if True, it simplifies the final result. The | |
default setting is `False`. | |
""" | |
_noconds = hints.get('noconds', True) | |
_simplify = hints.get('simplify', False) | |
debugf('[LT doit] (%s, %s, %s)', (self.function, | |
self.function_variable, | |
self.transform_variable)) | |
t_ = self.function_variable | |
s_ = self.transform_variable | |
fn = self.function | |
r = _laplace_transform(fn, t_, s_, simplify=_simplify) | |
if _noconds: | |
return r[0] | |
else: | |
return r | |
def laplace_transform(f, t, s, legacy_matrix=True, **hints): | |
r""" | |
Compute the Laplace Transform `F(s)` of `f(t)`, | |
.. math :: F(s) = \int_{0^{-}}^\infty e^{-st} f(t) \mathrm{d}t. | |
Explanation | |
=========== | |
For all sensible functions, this converges absolutely in a | |
half-plane | |
.. math :: a < \operatorname{Re}(s) | |
This function returns ``(F, a, cond)`` where ``F`` is the Laplace | |
transform of ``f``, `a` is the half-plane of convergence, and `cond` are | |
auxiliary convergence conditions. | |
The implementation is rule-based, and if you are interested in which | |
rules are applied, and whether integration is attempted, you can switch | |
debug information on by setting ``sympy.SYMPY_DEBUG=True``. The numbers | |
of the rules in the debug information (and the code) refer to Bateman's | |
Tables of Integral Transforms [1]. | |
The lower bound is `0-`, meaning that this bound should be approached | |
from the lower side. This is only necessary if distributions are involved. | |
At present, it is only done if `f(t)` contains ``DiracDelta``, in which | |
case the Laplace transform is computed implicitly as | |
.. math :: | |
F(s) = \lim_{\tau\to 0^{-}} \int_{\tau}^\infty e^{-st} | |
f(t) \mathrm{d}t | |
by applying rules. | |
If the Laplace transform cannot be fully computed in closed form, this | |
function returns expressions containing unevaluated | |
:class:`LaplaceTransform` objects. | |
For a description of possible hints, refer to the docstring of | |
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If | |
``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also | |
not the plane ``a``). | |
.. deprecated:: 1.9 | |
Legacy behavior for matrices where ``laplace_transform`` with | |
``noconds=False`` (the default) returns a Matrix whose elements are | |
tuples. The behavior of ``laplace_transform`` for matrices will change | |
in a future release of SymPy to return a tuple of the transformed | |
Matrix and the convergence conditions for the matrix as a whole. Use | |
``legacy_matrix=False`` to enable the new behavior. | |
Examples | |
======== | |
>>> from sympy import DiracDelta, exp, laplace_transform | |
>>> from sympy.abc import t, s, a | |
>>> laplace_transform(t**4, t, s) | |
(24/s**5, 0, True) | |
>>> laplace_transform(t**a, t, s) | |
(gamma(a + 1)/(s*s**a), 0, re(a) > -1) | |
>>> laplace_transform(DiracDelta(t)-a*exp(-a*t), t, s, simplify=True) | |
(s/(a + s), -re(a), True) | |
References | |
========== | |
.. [1] Erdelyi, A. (ed.), Tables of Integral Transforms, Volume 1, | |
Bateman Manuscript Prooject, McGraw-Hill (1954), available: | |
https://resolver.caltech.edu/CaltechAUTHORS:20140123-101456353 | |
See Also | |
======== | |
inverse_laplace_transform, mellin_transform, fourier_transform | |
hankel_transform, inverse_hankel_transform | |
""" | |
_noconds = hints.get('noconds', False) | |
_simplify = hints.get('simplify', False) | |
if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): | |
conds = not hints.get('noconds', False) | |
if conds and legacy_matrix: | |
adt = 'deprecated-laplace-transform-matrix' | |
sympy_deprecation_warning( | |
""" | |
Calling laplace_transform() on a Matrix with noconds=False (the default) is | |
deprecated. Either noconds=True or use legacy_matrix=False to get the new | |
behavior. | |
""", | |
deprecated_since_version='1.9', | |
active_deprecations_target=adt, | |
) | |
# Temporarily disable the deprecation warning for non-Expr objects | |
# in Matrix | |
with ignore_warnings(SymPyDeprecationWarning): | |
return f.applyfunc( | |
lambda fij: laplace_transform(fij, t, s, **hints)) | |
else: | |
elements_trans = [laplace_transform( | |
fij, t, s, **hints) for fij in f] | |
if conds: | |
elements, avals, conditions = zip(*elements_trans) | |
f_laplace = type(f)(*f.shape, elements) | |
return f_laplace, Max(*avals), And(*conditions) | |
else: | |
return type(f)(*f.shape, elements_trans) | |
LT = LaplaceTransform(f, t, s).doit(noconds=False, simplify=_simplify) | |
if not _noconds: | |
return LT | |
else: | |
return LT[0] | |
def _inverse_laplace_transform_integration(F, s, t_, plane, simplify=True): | |
""" The backend function for inverse Laplace transforms. """ | |
from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp | |
from sympy.integrals.transforms import inverse_mellin_transform | |
# There are two strategies we can try: | |
# 1) Use inverse mellin transform, related by a simple change of variables. | |
# 2) Use the inversion integral. | |
t = Dummy('t', real=True) | |
def pw_simp(*args): | |
""" Simplify a piecewise expression from hyperexpand. """ | |
# XXX we break modularity here! | |
if len(args) != 3: | |
return Piecewise(*args) | |
arg = args[2].args[0].argument | |
coeff, exponent = _get_coeff_exp(arg, t) | |
e1 = args[0].args[0] | |
e2 = args[1].args[0] | |
return ( | |
Heaviside(1/Abs(coeff) - t**exponent)*e1 + | |
Heaviside(t**exponent - 1/Abs(coeff))*e2) | |
if F.is_rational_function(s): | |
F = F.apart(s) | |
if F.is_Add: | |
f = Add( | |
*[_inverse_laplace_transform_integration(X, s, t, plane, simplify) | |
for X in F.args]) | |
return _simplify(f.subs(t, t_), simplify), True | |
try: | |
f, cond = inverse_mellin_transform(F, s, exp(-t), (None, S.Infinity), | |
needeval=True, noconds=False) | |
except IntegralTransformError: | |
f = None | |
if f is None: | |
f = meijerint_inversion(F, s, t) | |
if f is None: | |
return None | |
if f.is_Piecewise: | |
f, cond = f.args[0] | |
if f.has(Integral): | |
return None | |
else: | |
cond = S.true | |
f = f.replace(Piecewise, pw_simp) | |
if f.is_Piecewise: | |
# many of the functions called below can't work with piecewise | |
# (b/c it has a bool in args) | |
return f.subs(t, t_), cond | |
u = Dummy('u') | |
def simp_heaviside(arg, H0=S.Half): | |
a = arg.subs(exp(-t), u) | |
if a.has(t): | |
return Heaviside(arg, H0) | |
from sympy.solvers.inequalities import _solve_inequality | |
rel = _solve_inequality(a > 0, u) | |
if rel.lts == u: | |
k = log(rel.gts) | |
return Heaviside(t + k, H0) | |
else: | |
k = log(rel.lts) | |
return Heaviside(-(t + k), H0) | |
f = f.replace(Heaviside, simp_heaviside) | |
def simp_exp(arg): | |
return expand_complex(exp(arg)) | |
f = f.replace(exp, simp_exp) | |
# TODO it would be nice to fix cosh and sinh ... simplify messes these | |
# exponentials up | |
return _simplify(f.subs(t, t_), simplify), cond | |
def _complete_the_square_in_denom(f, s): | |
from sympy.simplify.radsimp import fraction | |
[n, d] = fraction(f) | |
if d.is_polynomial(s): | |
cf = d.as_poly(s).all_coeffs() | |
if len(cf) == 3: | |
a, b, c = cf | |
d = a*((s+b/(2*a))**2+c/a-(b/(2*a))**2) | |
return n/d | |
def _inverse_laplace_build_rules(): | |
""" | |
This is an internal helper function that returns the table of inverse | |
Laplace transform rules in terms of the time variable `t` and the | |
frequency variable `s`. It is used by `_inverse_laplace_apply_rules`. | |
""" | |
s = Dummy('s') | |
t = Dummy('t') | |
a = Wild('a', exclude=[s]) | |
b = Wild('b', exclude=[s]) | |
c = Wild('c', exclude=[s]) | |
debug('_inverse_laplace_build_rules is building rules') | |
def _frac(f, s): | |
try: | |
return f.factor(s) | |
except PolynomialError: | |
return f | |
def same(f): return f | |
# This list is sorted according to the prep function needed. | |
_ILT_rules = [ | |
(a/s, a, S.true, same, 1), | |
(b*(s+a)**(-c), t**(c-1)*exp(-a*t)/gamma(c), c > 0, same, 1), | |
(1/(s**2+a**2)**2, (sin(a*t) - a*t*cos(a*t))/(2*a**3), | |
S.true, same, 1), | |
# The next two rules must be there in that order. For the second | |
# one, the condition would be a != 0 or, respectively, to take the | |
# limit a -> 0 after the transform if a == 0. It is much simpler if | |
# the case a == 0 has its own rule. | |
(1/(s**b), t**(b - 1)/gamma(b), S.true, same, 1), | |
(1/(s*(s+a)**b), lowergamma(b, a*t)/(a**b*gamma(b)), | |
S.true, same, 1) | |
] | |
return _ILT_rules, s, t | |
def _inverse_laplace_apply_simple_rules(f, s, t): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
if f == 1: | |
debug('_inverse_laplace_apply_simple_rules match:') | |
debugf(' f: %s', (1,)) | |
debugf(' rule: 1 o---o DiracDelta(%s)', (t,)) | |
return DiracDelta(t), S.true | |
_ILT_rules, s_, t_ = _inverse_laplace_build_rules() | |
_prep = '' | |
fsubs = f.subs({s: s_}) | |
for s_dom, t_dom, check, prep, fac in _ILT_rules: | |
if _prep != (prep, fac): | |
_F = prep(fsubs*fac) | |
_prep = (prep, fac) | |
ma = _F.match(s_dom) | |
if ma: | |
try: | |
c = check.xreplace(ma) | |
except TypeError: | |
continue | |
if c == S.true: | |
debug('_inverse_laplace_apply_simple_rules match:') | |
debugf(' f: %s', (f,)) | |
debugf(' rule: %s o---o %s', (s_dom, t_dom)) | |
debugf(' ma: %s', (ma,)) | |
return Heaviside(t)*t_dom.xreplace(ma).subs({t_: t}), S.true | |
return None | |
def _inverse_laplace_time_shift(F, s, t, plane): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
a = Wild('a', exclude=[s]) | |
g = Wild('g') | |
if not F.has(s): | |
return F*DiracDelta(t), S.true | |
ma1 = F.match(exp(a*s)) | |
if ma1: | |
if ma1[a].is_negative: | |
debug('_inverse_laplace_time_shift match:') | |
debugf(' f: %s', (F,)) | |
debug(' rule: exp(-a*s) o---o DiracDelta(t-a)') | |
debugf(' ma: %s', (ma1,)) | |
return DiracDelta(t+ma1[a]), S.true | |
else: | |
debug('_inverse_laplace_time_shift match: negative time shift') | |
return InverseLaplaceTransform(F, s, t, plane), S.true | |
ma1 = F.match(exp(a*s)*g) | |
if ma1: | |
if ma1[a].is_negative: | |
debug('_inverse_laplace_time_shift match:') | |
debugf(' f: %s', (F,)) | |
debug(' rule: exp(-a*s)*F(s) o---o Heaviside(t-a)*f(t-a)') | |
debugf(' ma: %s', (ma1,)) | |
return _inverse_laplace_transform(ma1[g], s, t+ma1[a], plane) | |
else: | |
debug('_inverse_laplace_time_shift match: negative time shift') | |
return InverseLaplaceTransform(F, s, t, plane), S.true | |
return None | |
def _inverse_laplace_time_diff(F, s, t, plane): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
n = Wild('n', exclude=[s]) | |
g = Wild('g') | |
ma1 = F.match(s**n*g) | |
if ma1 and ma1[n].is_integer and ma1[n].is_positive: | |
debug('_inverse_laplace_time_diff match:') | |
debugf(' f: %s', (F,)) | |
debug(' rule: s**n*F(s) o---o diff(f(t), t, n)') | |
debugf(' ma: %s', (ma1,)) | |
r, c = _inverse_laplace_transform(ma1[g], s, t, plane) | |
r = r.replace(Heaviside(t), 1) | |
if r.has(InverseLaplaceTransform): | |
return diff(r, t, ma1[n]), c | |
else: | |
return Heaviside(t)*diff(r, t, ma1[n]), c | |
return None | |
def _inverse_laplace_apply_prog_rules(F, s, t, plane): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
prog_rules = [_inverse_laplace_time_shift, | |
_inverse_laplace_time_diff] | |
for p_rule in prog_rules: | |
if (r := p_rule(F, s, t, plane)) is not None: | |
return r | |
return None | |
def _inverse_laplace_expand(fn, s, t, plane): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
if fn.is_Add: | |
return None | |
r = expand(fn, deep=False) | |
if r.is_Add: | |
return _inverse_laplace_transform(r, s, t, plane) | |
r = expand_mul(fn) | |
if r.is_Add: | |
return _inverse_laplace_transform(r, s, t, plane) | |
r = expand(fn) | |
if r.is_Add: | |
return _inverse_laplace_transform(r, s, t, plane) | |
if fn.is_rational_function(s): | |
r = fn.apart(s).doit() | |
if r.is_Add: | |
return _inverse_laplace_transform(r, s, t, plane) | |
return None | |
def _inverse_laplace_rational(fn, s, t, plane, simplify): | |
""" | |
Helper function for the class InverseLaplaceTransform. | |
""" | |
debugf('[ILT _i_l_r] (%s, %s, %s)', (fn, s, t)) | |
x_ = symbols('x_') | |
f = fn.apart(s) | |
terms = Add.make_args(f) | |
terms_t = [] | |
conditions = [S.true] | |
for term in terms: | |
[n, d] = term.as_numer_denom() | |
dc = d.as_poly(s).all_coeffs() | |
dc_lead = dc[0] | |
dc = [x/dc_lead for x in dc] | |
nc = [x/dc_lead for x in n.as_poly(s).all_coeffs()] | |
if len(dc) == 1: | |
r = nc[0]*DiracDelta(t) | |
terms_t.append(r) | |
elif len(dc) == 2: | |
r = nc[0]*exp(-dc[1]*t) | |
terms_t.append(Heaviside(t)*r) | |
elif len(dc) == 3: | |
a = dc[1]/2 | |
b = (dc[2]-a**2).factor() | |
if len(nc) == 1: | |
nc = [S.Zero] + nc | |
l, m = tuple(nc) | |
if b == 0: | |
r = (m*t+l*(1-a*t))*exp(-a*t) | |
else: | |
hyp = False | |
if b.is_negative: | |
b = -b | |
hyp = True | |
b2 = list(roots(x_**2-b, x_).keys())[0] | |
bs = sqrt(b).simplify() | |
if hyp: | |
r = ( | |
l*exp(-a*t)*cosh(b2*t) + (m-a*l) / | |
bs*exp(-a*t)*sinh(bs*t)) | |
else: | |
r = l*exp(-a*t)*cos(b2*t) + (m-a*l)/bs*exp(-a*t)*sin(bs*t) | |
terms_t.append(Heaviside(t)*r) | |
else: | |
ft, cond = _inverse_laplace_transform( | |
fn, s, t, plane, simplify=True, dorational=False) | |
terms_t.append(ft) | |
conditions.append(cond) | |
result = Add(*terms_t) | |
if simplify: | |
result = result.simplify(doit=False) | |
debugf('[ILT _i_l_r] returns %s', (result,)) | |
return result, And(*conditions) | |
def _inverse_laplace_transform( | |
fn, s_, t_, plane, simplify=True, dorational=True): | |
""" | |
Front-end function of the inverse Laplace transform. It tries to apply all | |
known rules recursively. If everything else fails, it tries to integrate. | |
""" | |
terms = Add.make_args(fn) | |
terms_t = [] | |
conditions = [] | |
debugf('[ILT _i_l_t] (%s, %s, %s)', (fn, s_, t_)) | |
for term in terms: | |
k, f = term.as_independent(s_, as_Add=False) | |
if ( | |
dorational and term.is_rational_function(s_) and | |
( | |
r := _inverse_laplace_rational( | |
f, s_, t_, plane, simplify)) is not None): | |
pass | |
elif (r := _inverse_laplace_apply_simple_rules(f, s_, t_)) is not None: | |
pass | |
elif (r := _inverse_laplace_expand(f, s_, t_, plane)) is not None: | |
pass | |
elif ( | |
(r := _inverse_laplace_apply_prog_rules(f, s_, t_, plane)) | |
is not None): | |
pass | |
elif any(undef.has(s_) for undef in f.atoms(AppliedUndef)): | |
# If there are undefined functions f(t) then integration is | |
# unlikely to do anything useful so we skip it and given an | |
# unevaluated LaplaceTransform. | |
r = (InverseLaplaceTransform(f, s_, t_, plane), S.true) | |
elif ( | |
r := _inverse_laplace_transform_integration( | |
f, s_, t_, plane, simplify=simplify)) is not None: | |
pass | |
else: | |
r = (InverseLaplaceTransform(f, s_, t_, plane), S.true) | |
(ri_, ci_) = r | |
terms_t.append(k*ri_) | |
conditions.append(ci_) | |
result = Add(*terms_t) | |
if simplify: | |
result = result.simplify(doit=False) | |
condition = And(*conditions) | |
return result, condition | |
class InverseLaplaceTransform(IntegralTransform): | |
""" | |
Class representing unevaluated inverse Laplace transforms. | |
For usage of this class, see the :class:`IntegralTransform` docstring. | |
For how to compute inverse Laplace transforms, see the | |
:func:`inverse_laplace_transform` docstring. | |
""" | |
_name = 'Inverse Laplace' | |
_none_sentinel = Dummy('None') | |
_c = Dummy('c') | |
def __new__(cls, F, s, x, plane, **opts): | |
if plane is None: | |
plane = InverseLaplaceTransform._none_sentinel | |
return IntegralTransform.__new__(cls, F, s, x, plane, **opts) | |
def fundamental_plane(self): | |
plane = self.args[3] | |
if plane is InverseLaplaceTransform._none_sentinel: | |
plane = None | |
return plane | |
def _compute_transform(self, F, s, t, **hints): | |
return _inverse_laplace_transform_integration( | |
F, s, t, self.fundamental_plane, **hints) | |
def _as_integral(self, F, s, t): | |
c = self.__class__._c | |
return ( | |
Integral(exp(s*t)*F, (s, c - S.ImaginaryUnit*S.Infinity, | |
c + S.ImaginaryUnit*S.Infinity)) / | |
(2*S.Pi*S.ImaginaryUnit)) | |
def doit(self, **hints): | |
""" | |
Try to evaluate the transform in closed form. | |
Explanation | |
=========== | |
Standard hints are the following: | |
- ``noconds``: if True, do not return convergence conditions. The | |
default setting is `True`. | |
- ``simplify``: if True, it simplifies the final result. The | |
default setting is `False`. | |
""" | |
_noconds = hints.get('noconds', True) | |
_simplify = hints.get('simplify', False) | |
debugf('[ILT doit] (%s, %s, %s)', (self.function, | |
self.function_variable, | |
self.transform_variable)) | |
s_ = self.function_variable | |
t_ = self.transform_variable | |
fn = self.function | |
plane = self.fundamental_plane | |
r = _inverse_laplace_transform(fn, s_, t_, plane, simplify=_simplify) | |
if _noconds: | |
return r[0] | |
else: | |
return r | |
def inverse_laplace_transform(F, s, t, plane=None, **hints): | |
r""" | |
Compute the inverse Laplace transform of `F(s)`, defined as | |
.. math :: | |
f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} | |
F(s) \mathrm{d}s, | |
for `c` so large that `F(s)` has no singularites in the | |
half-plane `\operatorname{Re}(s) > c-\epsilon`. | |
Explanation | |
=========== | |
The plane can be specified by | |
argument ``plane``, but will be inferred if passed as None. | |
Under certain regularity conditions, this recovers `f(t)` from its | |
Laplace Transform `F(s)`, for non-negative `t`, and vice | |
versa. | |
If the integral cannot be computed in closed form, this function returns | |
an unevaluated :class:`InverseLaplaceTransform` object. | |
Note that this function will always assume `t` to be real, | |
regardless of the SymPy assumption on `t`. | |
For a description of possible hints, refer to the docstring of | |
:func:`sympy.integrals.transforms.IntegralTransform.doit`. | |
Examples | |
======== | |
>>> from sympy import inverse_laplace_transform, exp, Symbol | |
>>> from sympy.abc import s, t | |
>>> a = Symbol('a', positive=True) | |
>>> inverse_laplace_transform(exp(-a*s)/s, s, t) | |
Heaviside(-a + t) | |
See Also | |
======== | |
laplace_transform | |
hankel_transform, inverse_hankel_transform | |
""" | |
if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): | |
return F.applyfunc( | |
lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) | |
return InverseLaplaceTransform(F, s, t, plane).doit(**hints) | |
def _fast_inverse_laplace(e, s, t): | |
"""Fast inverse Laplace transform of rational function including RootSum""" | |
a, b, n = symbols('a, b, n', cls=Wild, exclude=[s]) | |
def _ilt(e): | |
if not e.has(s): | |
return e | |
elif e.is_Add: | |
return _ilt_add(e) | |
elif e.is_Mul: | |
return _ilt_mul(e) | |
elif e.is_Pow: | |
return _ilt_pow(e) | |
elif isinstance(e, RootSum): | |
return _ilt_rootsum(e) | |
else: | |
raise NotImplementedError | |
def _ilt_add(e): | |
return e.func(*map(_ilt, e.args)) | |
def _ilt_mul(e): | |
coeff, expr = e.as_independent(s) | |
if expr.is_Mul: | |
raise NotImplementedError | |
return coeff * _ilt(expr) | |
def _ilt_pow(e): | |
match = e.match((a*s + b)**n) | |
if match is not None: | |
nm, am, bm = match[n], match[a], match[b] | |
if nm.is_Integer and nm < 0: | |
return t**(-nm-1)*exp(-(bm/am)*t)/(am**-nm*gamma(-nm)) | |
if nm == 1: | |
return exp(-(bm/am)*t) / am | |
raise NotImplementedError | |
def _ilt_rootsum(e): | |
expr = e.fun.expr | |
[variable] = e.fun.variables | |
return RootSum(e.poly, Lambda(variable, together(_ilt(expr)))) | |
return _ilt(e) | |