peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/ntheory
/primetest.py
""" | |
Primality testing | |
""" | |
from sympy.core.numbers import igcd | |
from sympy.core.power import integer_nthroot | |
from sympy.core.sympify import sympify | |
from sympy.external.gmpy import HAS_GMPY | |
from sympy.utilities.misc import as_int | |
from mpmath.libmp import bitcount as _bitlength | |
def _int_tuple(*i): | |
return tuple(int(_) for _ in i) | |
def is_euler_pseudoprime(n, b): | |
"""Returns True if n is prime or an Euler pseudoprime to base b, else False. | |
Euler Pseudoprime : In arithmetic, an odd composite integer n is called an | |
euler pseudoprime to base a, if a and n are coprime and satisfy the modular | |
arithmetic congruence relation : | |
a ^ (n-1)/2 = + 1(mod n) or | |
a ^ (n-1)/2 = - 1(mod n) | |
(where mod refers to the modulo operation). | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import is_euler_pseudoprime | |
>>> is_euler_pseudoprime(2, 5) | |
True | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime | |
""" | |
from sympy.ntheory.factor_ import trailing | |
if not mr(n, [b]): | |
return False | |
n = as_int(n) | |
r = n - 1 | |
c = pow(b, r >> trailing(r), n) | |
if c == 1: | |
return True | |
while True: | |
if c == n - 1: | |
return True | |
c = pow(c, 2, n) | |
if c == 1: | |
return False | |
def is_square(n, prep=True): | |
"""Return True if n == a * a for some integer a, else False. | |
If n is suspected of *not* being a square then this is a | |
quick method of confirming that it is not. | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import is_square | |
>>> is_square(25) | |
True | |
>>> is_square(2) | |
False | |
References | |
========== | |
.. [1] https://mersenneforum.org/showpost.php?p=110896 | |
See Also | |
======== | |
sympy.core.power.integer_nthroot | |
""" | |
if prep: | |
n = as_int(n) | |
if n < 0: | |
return False | |
if n in (0, 1): | |
return True | |
# def magic(n): | |
# s = {x**2 % n for x in range(n)} | |
# return sum(1 << bit for bit in s) | |
# >>> print(hex(magic(128))) | |
# 0x2020212020202130202021202030213 | |
# >>> print(hex(magic(99))) | |
# 0x209060049048220348a410213 | |
# >>> print(hex(magic(91))) | |
# 0x102e403012a0c9862c14213 | |
# >>> print(hex(magic(85))) | |
# 0x121065188e001c46298213 | |
if not 0x2020212020202130202021202030213 & (1 << (n & 127)): | |
return False # e.g. 2, 3 | |
m = n % (99 * 91 * 85) | |
if not 0x209060049048220348a410213 & (1 << (m % 99)): | |
return False # e.g. 17, 68 | |
if not 0x102e403012a0c9862c14213 & (1 << (m % 91)): | |
return False # e.g. 97, 388 | |
if not 0x121065188e001c46298213 & (1 << (m % 85)): | |
return False # e.g. 793, 1408 | |
# n is either: | |
# a) odd = 4*even + 1 (and square if even = k*(k + 1)) | |
# b) even with | |
# odd multiplicity of 2 --> not square, e.g. 39040 | |
# even multiplicity of 2, e.g. 4, 16, 36, ..., 16324 | |
# removal of factors of 2 to give an odd, and rejection if | |
# any(i%2 for i in divmod(odd - 1, 4)) | |
# will give an odd number in form 4*even + 1. | |
# Use of `trailing` to check the power of 2 is not done since it | |
# does not apply to a large percentage of arbitrary numbers | |
# and the integer_nthroot is able to quickly resolve these cases. | |
return integer_nthroot(n, 2)[1] | |
def _test(n, base, s, t): | |
"""Miller-Rabin strong pseudoprime test for one base. | |
Return False if n is definitely composite, True if n is | |
probably prime, with a probability greater than 3/4. | |
""" | |
# do the Fermat test | |
b = pow(base, t, n) | |
if b == 1 or b == n - 1: | |
return True | |
else: | |
for j in range(1, s): | |
b = pow(b, 2, n) | |
if b == n - 1: | |
return True | |
# see I. Niven et al. "An Introduction to Theory of Numbers", page 78 | |
if b == 1: | |
return False | |
return False | |
def mr(n, bases): | |
"""Perform a Miller-Rabin strong pseudoprime test on n using a | |
given list of bases/witnesses. | |
References | |
========== | |
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: | |
A Computational Perspective", Springer, 2nd edition, 135-138 | |
A list of thresholds and the bases they require are here: | |
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import mr | |
>>> mr(1373651, [2, 3]) | |
False | |
>>> mr(479001599, [31, 73]) | |
True | |
""" | |
from sympy.ntheory.factor_ import trailing | |
from sympy.polys.domains import ZZ | |
n = as_int(n) | |
if n < 2: | |
return False | |
# remove powers of 2 from n-1 (= t * 2**s) | |
s = trailing(n - 1) | |
t = n >> s | |
for base in bases: | |
# Bases >= n are wrapped, bases < 2 are invalid | |
if base >= n: | |
base %= n | |
if base >= 2: | |
base = ZZ(base) | |
if not _test(n, base, s, t): | |
return False | |
return True | |
def _lucas_sequence(n, P, Q, k): | |
"""Return the modular Lucas sequence (U_k, V_k, Q_k). | |
Given a Lucas sequence defined by P, Q, returns the kth values for | |
U and V, along with Q^k, all modulo n. This is intended for use with | |
possibly very large values of n and k, where the combinatorial functions | |
would be completely unusable. | |
The modular Lucas sequences are used in numerous places in number theory, | |
especially in the Lucas compositeness tests and the various n + 1 proofs. | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import _lucas_sequence | |
>>> N = 10**2000 + 4561 | |
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol | |
(0, 2, 1) | |
""" | |
D = P*P - 4*Q | |
if n < 2: | |
raise ValueError("n must be >= 2") | |
if k < 0: | |
raise ValueError("k must be >= 0") | |
if D == 0: | |
raise ValueError("D must not be zero") | |
if k == 0: | |
return _int_tuple(0, 2, Q) | |
U = 1 | |
V = P | |
Qk = Q | |
b = _bitlength(k) | |
if Q == 1: | |
# Optimization for extra strong tests. | |
while b > 1: | |
U = (U*V) % n | |
V = (V*V - 2) % n | |
b -= 1 | |
if (k >> (b - 1)) & 1: | |
U, V = U*P + V, V*P + U*D | |
if U & 1: | |
U += n | |
if V & 1: | |
V += n | |
U, V = U >> 1, V >> 1 | |
elif P == 1 and Q == -1: | |
# Small optimization for 50% of Selfridge parameters. | |
while b > 1: | |
U = (U*V) % n | |
if Qk == 1: | |
V = (V*V - 2) % n | |
else: | |
V = (V*V + 2) % n | |
Qk = 1 | |
b -= 1 | |
if (k >> (b-1)) & 1: | |
U, V = U + V, V + U*D | |
if U & 1: | |
U += n | |
if V & 1: | |
V += n | |
U, V = U >> 1, V >> 1 | |
Qk = -1 | |
else: | |
# The general case with any P and Q. | |
while b > 1: | |
U = (U*V) % n | |
V = (V*V - 2*Qk) % n | |
Qk *= Qk | |
b -= 1 | |
if (k >> (b - 1)) & 1: | |
U, V = U*P + V, V*P + U*D | |
if U & 1: | |
U += n | |
if V & 1: | |
V += n | |
U, V = U >> 1, V >> 1 | |
Qk *= Q | |
Qk %= n | |
return _int_tuple(U % n, V % n, Qk) | |
def _lucas_selfridge_params(n): | |
"""Calculates the Selfridge parameters (D, P, Q) for n. This is | |
method A from page 1401 of Baillie and Wagstaff. | |
References | |
========== | |
.. [1] "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. | |
http://mpqs.free.fr/LucasPseudoprimes.pdf | |
""" | |
from sympy.ntheory.residue_ntheory import jacobi_symbol | |
D = 5 | |
while True: | |
g = igcd(abs(D), n) | |
if g > 1 and g != n: | |
return (0, 0, 0) | |
if jacobi_symbol(D, n) == -1: | |
break | |
if D > 0: | |
D = -D - 2 | |
else: | |
D = -D + 2 | |
return _int_tuple(D, 1, (1 - D)/4) | |
def _lucas_extrastrong_params(n): | |
"""Calculates the "extra strong" parameters (D, P, Q) for n. | |
References | |
========== | |
.. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes | |
https://oeis.org/A217719 | |
.. [1] https://en.wikipedia.org/wiki/Lucas_pseudoprime | |
""" | |
from sympy.ntheory.residue_ntheory import jacobi_symbol | |
P, Q, D = 3, 1, 5 | |
while True: | |
g = igcd(D, n) | |
if g > 1 and g != n: | |
return (0, 0, 0) | |
if jacobi_symbol(D, n) == -1: | |
break | |
P += 1 | |
D = P*P - 4 | |
return _int_tuple(D, P, Q) | |
def is_lucas_prp(n): | |
"""Standard Lucas compositeness test with Selfridge parameters. Returns | |
False if n is definitely composite, and True if n is a Lucas probable | |
prime. | |
This is typically used in combination with the Miller-Rabin test. | |
References | |
========== | |
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. | |
http://mpqs.free.fr/LucasPseudoprimes.pdf | |
- OEIS A217120: Lucas Pseudoprimes | |
https://oeis.org/A217120 | |
- https://en.wikipedia.org/wiki/Lucas_pseudoprime | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp | |
>>> for i in range(10000): | |
... if is_lucas_prp(i) and not isprime(i): | |
... print(i) | |
323 | |
377 | |
1159 | |
1829 | |
3827 | |
5459 | |
5777 | |
9071 | |
9179 | |
""" | |
n = as_int(n) | |
if n == 2: | |
return True | |
if n < 2 or (n % 2) == 0: | |
return False | |
if is_square(n, False): | |
return False | |
D, P, Q = _lucas_selfridge_params(n) | |
if D == 0: | |
return False | |
U, V, Qk = _lucas_sequence(n, P, Q, n+1) | |
return U == 0 | |
def is_strong_lucas_prp(n): | |
"""Strong Lucas compositeness test with Selfridge parameters. Returns | |
False if n is definitely composite, and True if n is a strong Lucas | |
probable prime. | |
This is often used in combination with the Miller-Rabin test, and | |
in particular, when combined with M-R base 2 creates the strong BPSW test. | |
References | |
========== | |
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. | |
http://mpqs.free.fr/LucasPseudoprimes.pdf | |
- OEIS A217255: Strong Lucas Pseudoprimes | |
https://oeis.org/A217255 | |
- https://en.wikipedia.org/wiki/Lucas_pseudoprime | |
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp | |
>>> for i in range(20000): | |
... if is_strong_lucas_prp(i) and not isprime(i): | |
... print(i) | |
5459 | |
5777 | |
10877 | |
16109 | |
18971 | |
""" | |
from sympy.ntheory.factor_ import trailing | |
n = as_int(n) | |
if n == 2: | |
return True | |
if n < 2 or (n % 2) == 0: | |
return False | |
if is_square(n, False): | |
return False | |
D, P, Q = _lucas_selfridge_params(n) | |
if D == 0: | |
return False | |
# remove powers of 2 from n+1 (= k * 2**s) | |
s = trailing(n + 1) | |
k = (n+1) >> s | |
U, V, Qk = _lucas_sequence(n, P, Q, k) | |
if U == 0 or V == 0: | |
return True | |
for r in range(1, s): | |
V = (V*V - 2*Qk) % n | |
if V == 0: | |
return True | |
Qk = pow(Qk, 2, n) | |
return False | |
def is_extra_strong_lucas_prp(n): | |
"""Extra Strong Lucas compositeness test. Returns False if n is | |
definitely composite, and True if n is a "extra strong" Lucas probable | |
prime. | |
The parameters are selected using P = 3, Q = 1, then incrementing P until | |
(D|n) == -1. The test itself is as defined in Grantham 2000, from the | |
Mo and Jones preprint. The parameter selection and test are the same as | |
used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime | |
page on Wikipedia. | |
With these parameters, there are no counterexamples below 2^64 nor any | |
known above that range. It is 20-50% faster than the strong test. | |
Because of the different parameters selected, there is no relationship | |
between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes. | |
In particular, one is not a subset of the other. | |
References | |
========== | |
- "Frobenius Pseudoprimes", Jon Grantham, 2000. | |
https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/ | |
- OEIS A217719: Extra Strong Lucas Pseudoprimes | |
https://oeis.org/A217719 | |
- https://en.wikipedia.org/wiki/Lucas_pseudoprime | |
Examples | |
======== | |
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp | |
>>> for i in range(20000): | |
... if is_extra_strong_lucas_prp(i) and not isprime(i): | |
... print(i) | |
989 | |
3239 | |
5777 | |
10877 | |
""" | |
# Implementation notes: | |
# 1) the parameters differ from Thomas R. Nicely's. His parameter | |
# selection leads to pseudoprimes that overlap M-R tests, and | |
# contradict Baillie and Wagstaff's suggestion of (D|n) = -1. | |
# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas | |
# sequence must have Q=1. See Grantham theorem 2.3, any of the | |
# references on the MathWorld page, or run it and see Q=-1 is wrong. | |
from sympy.ntheory.factor_ import trailing | |
n = as_int(n) | |
if n == 2: | |
return True | |
if n < 2 or (n % 2) == 0: | |
return False | |
if is_square(n, False): | |
return False | |
D, P, Q = _lucas_extrastrong_params(n) | |
if D == 0: | |
return False | |
# remove powers of 2 from n+1 (= k * 2**s) | |
s = trailing(n + 1) | |
k = (n+1) >> s | |
U, V, Qk = _lucas_sequence(n, P, Q, k) | |
if U == 0 and (V == 2 or V == n - 2): | |
return True | |
for r in range(1, s): | |
if V == 0: | |
return True | |
V = (V*V - 2) % n | |
return False | |
def isprime(n): | |
""" | |
Test if n is a prime number (True) or not (False). For n < 2^64 the | |
answer is definitive; larger n values have a small probability of actually | |
being pseudoprimes. | |
Negative numbers (e.g. -2) are not considered prime. | |
The first step is looking for trivial factors, which if found enables | |
a quick return. Next, if the sieve is large enough, use bisection search | |
on the sieve. For small numbers, a set of deterministic Miller-Rabin | |
tests are performed with bases that are known to have no counterexamples | |
in their range. Finally if the number is larger than 2^64, a strong | |
BPSW test is performed. While this is a probable prime test and we | |
believe counterexamples exist, there are no known counterexamples. | |
Examples | |
======== | |
>>> from sympy.ntheory import isprime | |
>>> isprime(13) | |
True | |
>>> isprime(13.0) # limited precision | |
False | |
>>> isprime(15) | |
False | |
Notes | |
===== | |
This routine is intended only for integer input, not numerical | |
expressions which may represent numbers. Floats are also | |
rejected as input because they represent numbers of limited | |
precision. While it is tempting to permit 7.0 to represent an | |
integer there are errors that may "pass silently" if this is | |
allowed: | |
>>> from sympy import Float, S | |
>>> int(1e3) == 1e3 == 10**3 | |
True | |
>>> int(1e23) == 1e23 | |
True | |
>>> int(1e23) == 10**23 | |
False | |
>>> near_int = 1 + S(1)/10**19 | |
>>> near_int == int(near_int) | |
False | |
>>> n = Float(near_int, 10) # truncated by precision | |
>>> n == int(n) | |
True | |
>>> n = Float(near_int, 20) | |
>>> n == int(n) | |
False | |
See Also | |
======== | |
sympy.ntheory.generate.primerange : Generates all primes in a given range | |
sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n | |
sympy.ntheory.generate.prime : Return the nth prime | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Strong_pseudoprime | |
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. | |
http://mpqs.free.fr/LucasPseudoprimes.pdf | |
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test | |
""" | |
try: | |
n = as_int(n) | |
except ValueError: | |
return False | |
# Step 1, do quick composite testing via trial division. The individual | |
# modulo tests benchmark faster than one or two primorial igcds for me. | |
# The point here is just to speedily handle small numbers and many | |
# composites. Step 2 only requires that n <= 2 get handled here. | |
if n in [2, 3, 5]: | |
return True | |
if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0: | |
return False | |
if n < 49: | |
return True | |
if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \ | |
(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \ | |
(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0: | |
return False | |
if n < 2809: | |
return True | |
if n < 31417: | |
return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951, 23377] | |
# bisection search on the sieve if the sieve is large enough | |
from sympy.ntheory.generate import sieve as s | |
if n <= s._list[-1]: | |
l, u = s.search(n) | |
return l == u | |
# If we have GMPY2, skip straight to step 3 and do a strong BPSW test. | |
# This should be a bit faster than our step 2, and for large values will | |
# be a lot faster than our step 3 (C+GMP vs. Python). | |
if HAS_GMPY == 2: | |
from gmpy2 import is_strong_prp, is_strong_selfridge_prp | |
return is_strong_prp(n, 2) and is_strong_selfridge_prp(n) | |
# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See: | |
# https://miller-rabin.appspot.com/ | |
# for lists. We have made sure the M-R routine will successfully handle | |
# bases larger than n, so we can use the minimal set. | |
# In September 2015 deterministic numbers were extended to over 2^81. | |
# https://arxiv.org/pdf/1509.00864.pdf | |
# https://oeis.org/A014233 | |
if n < 341531: | |
return mr(n, [9345883071009581737]) | |
if n < 885594169: | |
return mr(n, [725270293939359937, 3569819667048198375]) | |
if n < 350269456337: | |
return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375]) | |
if n < 55245642489451: | |
return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650]) | |
if n < 7999252175582851: | |
return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805]) | |
if n < 585226005592931977: | |
return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375]) | |
if n < 18446744073709551616: | |
return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) | |
if n < 318665857834031151167461: | |
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]) | |
if n < 3317044064679887385961981: | |
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]) | |
# We could do this instead at any point: | |
#if n < 18446744073709551616: | |
# return mr(n, [2]) and is_extra_strong_lucas_prp(n) | |
# Here are tests that are safe for MR routines that don't understand | |
# large bases. | |
#if n < 9080191: | |
# return mr(n, [31, 73]) | |
#if n < 19471033: | |
# return mr(n, [2, 299417]) | |
#if n < 38010307: | |
# return mr(n, [2, 9332593]) | |
#if n < 316349281: | |
# return mr(n, [11000544, 31481107]) | |
#if n < 4759123141: | |
# return mr(n, [2, 7, 61]) | |
#if n < 105936894253: | |
# return mr(n, [2, 1005905886, 1340600841]) | |
#if n < 31858317218647: | |
# return mr(n, [2, 642735, 553174392, 3046413974]) | |
#if n < 3071837692357849: | |
# return mr(n, [2, 75088, 642735, 203659041, 3613982119]) | |
#if n < 18446744073709551616: | |
# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) | |
# Step 3: BPSW. | |
# | |
# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed | |
# 44.0s old isprime using 46 bases | |
# 5.3s strong BPSW + one random base | |
# 4.3s extra strong BPSW + one random base | |
# 4.1s strong BPSW | |
# 3.2s extra strong BPSW | |
# Classic BPSW from page 1401 of the paper. See alternate ideas below. | |
return mr(n, [2]) and is_strong_lucas_prp(n) | |
# Using extra strong test, which is somewhat faster | |
#return mr(n, [2]) and is_extra_strong_lucas_prp(n) | |
# Add a random M-R base | |
#import random | |
#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n) | |
def is_gaussian_prime(num): | |
r"""Test if num is a Gaussian prime number. | |
References | |
========== | |
.. [1] https://oeis.org/wiki/Gaussian_primes | |
""" | |
num = sympify(num) | |
a, b = num.as_real_imag() | |
a = as_int(a, strict=False) | |
b = as_int(b, strict=False) | |
if a == 0: | |
b = abs(b) | |
return isprime(b) and b % 4 == 3 | |
elif b == 0: | |
a = abs(a) | |
return isprime(a) and a % 4 == 3 | |
return isprime(a**2 + b**2) | |