peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/polyclasses.py
"""OO layer for several polynomial representations. """ | |
from sympy.core.numbers import oo | |
from sympy.core.sympify import CantSympify | |
from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible | |
from sympy.polys.polyutils import PicklableWithSlots | |
class GenericPoly(PicklableWithSlots): | |
"""Base class for low-level polynomial representations. """ | |
def ground_to_ring(f): | |
"""Make the ground domain a ring. """ | |
return f.set_domain(f.dom.get_ring()) | |
def ground_to_field(f): | |
"""Make the ground domain a field. """ | |
return f.set_domain(f.dom.get_field()) | |
def ground_to_exact(f): | |
"""Make the ground domain exact. """ | |
return f.set_domain(f.dom.get_exact()) | |
def _perify_factors(per, result, include): | |
if include: | |
coeff, factors = result | |
factors = [ (per(g), k) for g, k in factors ] | |
if include: | |
return coeff, factors | |
else: | |
return factors | |
from sympy.polys.densebasic import ( | |
dmp_validate, | |
dup_normal, dmp_normal, | |
dup_convert, dmp_convert, | |
dmp_from_sympy, | |
dup_strip, | |
dup_degree, dmp_degree_in, | |
dmp_degree_list, | |
dmp_negative_p, | |
dup_LC, dmp_ground_LC, | |
dup_TC, dmp_ground_TC, | |
dmp_ground_nth, | |
dmp_one, dmp_ground, | |
dmp_zero_p, dmp_one_p, dmp_ground_p, | |
dup_from_dict, dmp_from_dict, | |
dmp_to_dict, | |
dmp_deflate, | |
dmp_inject, dmp_eject, | |
dmp_terms_gcd, | |
dmp_list_terms, dmp_exclude, | |
dmp_slice_in, dmp_permute, | |
dmp_to_tuple,) | |
from sympy.polys.densearith import ( | |
dmp_add_ground, | |
dmp_sub_ground, | |
dmp_mul_ground, | |
dmp_quo_ground, | |
dmp_exquo_ground, | |
dmp_abs, | |
dup_neg, dmp_neg, | |
dup_add, dmp_add, | |
dup_sub, dmp_sub, | |
dup_mul, dmp_mul, | |
dmp_sqr, | |
dup_pow, dmp_pow, | |
dmp_pdiv, | |
dmp_prem, | |
dmp_pquo, | |
dmp_pexquo, | |
dmp_div, | |
dup_rem, dmp_rem, | |
dmp_quo, | |
dmp_exquo, | |
dmp_add_mul, dmp_sub_mul, | |
dmp_max_norm, | |
dmp_l1_norm, | |
dmp_l2_norm_squared) | |
from sympy.polys.densetools import ( | |
dmp_clear_denoms, | |
dmp_integrate_in, | |
dmp_diff_in, | |
dmp_eval_in, | |
dup_revert, | |
dmp_ground_trunc, | |
dmp_ground_content, | |
dmp_ground_primitive, | |
dmp_ground_monic, | |
dmp_compose, | |
dup_decompose, | |
dup_shift, | |
dup_transform, | |
dmp_lift) | |
from sympy.polys.euclidtools import ( | |
dup_half_gcdex, dup_gcdex, dup_invert, | |
dmp_subresultants, | |
dmp_resultant, | |
dmp_discriminant, | |
dmp_inner_gcd, | |
dmp_gcd, | |
dmp_lcm, | |
dmp_cancel) | |
from sympy.polys.sqfreetools import ( | |
dup_gff_list, | |
dmp_norm, | |
dmp_sqf_p, | |
dmp_sqf_norm, | |
dmp_sqf_part, | |
dmp_sqf_list, dmp_sqf_list_include) | |
from sympy.polys.factortools import ( | |
dup_cyclotomic_p, dmp_irreducible_p, | |
dmp_factor_list, dmp_factor_list_include) | |
from sympy.polys.rootisolation import ( | |
dup_isolate_real_roots_sqf, | |
dup_isolate_real_roots, | |
dup_isolate_all_roots_sqf, | |
dup_isolate_all_roots, | |
dup_refine_real_root, | |
dup_count_real_roots, | |
dup_count_complex_roots, | |
dup_sturm, | |
dup_cauchy_upper_bound, | |
dup_cauchy_lower_bound, | |
dup_mignotte_sep_bound_squared) | |
from sympy.polys.polyerrors import ( | |
UnificationFailed, | |
PolynomialError) | |
def init_normal_DMP(rep, lev, dom): | |
return DMP(dmp_normal(rep, lev, dom), dom, lev) | |
class DMP(PicklableWithSlots, CantSympify): | |
"""Dense Multivariate Polynomials over `K`. """ | |
__slots__ = ('rep', 'lev', 'dom', 'ring') | |
def __init__(self, rep, dom, lev=None, ring=None): | |
if lev is not None: | |
# Not possible to check with isinstance | |
if type(rep) is dict: | |
rep = dmp_from_dict(rep, lev, dom) | |
elif not isinstance(rep, list): | |
rep = dmp_ground(dom.convert(rep), lev) | |
else: | |
rep, lev = dmp_validate(rep) | |
self.rep = rep | |
self.lev = lev | |
self.dom = dom | |
self.ring = ring | |
def __repr__(f): | |
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring) | |
def __hash__(f): | |
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring)) | |
def unify(f, g): | |
"""Unify representations of two multivariate polynomials. """ | |
if not isinstance(g, DMP) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom and f.ring == g.ring: | |
return f.lev, f.dom, f.per, f.rep, g.rep | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
ring = f.ring | |
if g.ring is not None: | |
if ring is not None: | |
ring = ring.unify(g.ring) | |
else: | |
ring = g.ring | |
F = dmp_convert(f.rep, lev, f.dom, dom) | |
G = dmp_convert(g.rep, lev, g.dom, dom) | |
def per(rep, dom=dom, lev=lev, kill=False): | |
if kill: | |
if not lev: | |
return rep | |
else: | |
lev -= 1 | |
return DMP(rep, dom, lev, ring) | |
return lev, dom, per, F, G | |
def per(f, rep, dom=None, kill=False, ring=None): | |
"""Create a DMP out of the given representation. """ | |
lev = f.lev | |
if kill: | |
if not lev: | |
return rep | |
else: | |
lev -= 1 | |
if dom is None: | |
dom = f.dom | |
if ring is None: | |
ring = f.ring | |
return DMP(rep, dom, lev, ring) | |
def zero(cls, lev, dom, ring=None): | |
return DMP(0, dom, lev, ring) | |
def one(cls, lev, dom, ring=None): | |
return DMP(1, dom, lev, ring) | |
def from_list(cls, rep, lev, dom): | |
"""Create an instance of ``cls`` given a list of native coefficients. """ | |
return cls(dmp_convert(rep, lev, None, dom), dom, lev) | |
def from_sympy_list(cls, rep, lev, dom): | |
"""Create an instance of ``cls`` given a list of SymPy coefficients. """ | |
return cls(dmp_from_sympy(rep, lev, dom), dom, lev) | |
def to_dict(f, zero=False): | |
"""Convert ``f`` to a dict representation with native coefficients. """ | |
return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) | |
def to_sympy_dict(f, zero=False): | |
"""Convert ``f`` to a dict representation with SymPy coefficients. """ | |
rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) | |
for k, v in rep.items(): | |
rep[k] = f.dom.to_sympy(v) | |
return rep | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
return f.rep | |
def to_sympy_list(f): | |
"""Convert ``f`` to a list representation with SymPy coefficients. """ | |
def sympify_nested_list(rep): | |
out = [] | |
for val in rep: | |
if isinstance(val, list): | |
out.append(sympify_nested_list(val)) | |
else: | |
out.append(f.dom.to_sympy(val)) | |
return out | |
return sympify_nested_list(f.rep) | |
def to_tuple(f): | |
""" | |
Convert ``f`` to a tuple representation with native coefficients. | |
This is needed for hashing. | |
""" | |
return dmp_to_tuple(f.rep, f.lev) | |
def from_dict(cls, rep, lev, dom): | |
"""Construct and instance of ``cls`` from a ``dict`` representation. """ | |
return cls(dmp_from_dict(rep, lev, dom), dom, lev) | |
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None): | |
return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring) | |
def to_ring(f): | |
"""Make the ground domain a ring. """ | |
return f.convert(f.dom.get_ring()) | |
def to_field(f): | |
"""Make the ground domain a field. """ | |
return f.convert(f.dom.get_field()) | |
def to_exact(f): | |
"""Make the ground domain exact. """ | |
return f.convert(f.dom.get_exact()) | |
def convert(f, dom): | |
"""Convert the ground domain of ``f``. """ | |
if f.dom == dom: | |
return f | |
else: | |
return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev) | |
def slice(f, m, n, j=0): | |
"""Take a continuous subsequence of terms of ``f``. """ | |
return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom)) | |
def coeffs(f, order=None): | |
"""Returns all non-zero coefficients from ``f`` in lex order. """ | |
return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] | |
def monoms(f, order=None): | |
"""Returns all non-zero monomials from ``f`` in lex order. """ | |
return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] | |
def terms(f, order=None): | |
"""Returns all non-zero terms from ``f`` in lex order. """ | |
return dmp_list_terms(f.rep, f.lev, f.dom, order=order) | |
def all_coeffs(f): | |
"""Returns all coefficients from ``f``. """ | |
if not f.lev: | |
if not f: | |
return [f.dom.zero] | |
else: | |
return list(f.rep) | |
else: | |
raise PolynomialError('multivariate polynomials not supported') | |
def all_monoms(f): | |
"""Returns all monomials from ``f``. """ | |
if not f.lev: | |
n = dup_degree(f.rep) | |
if n < 0: | |
return [(0,)] | |
else: | |
return [ (n - i,) for i, c in enumerate(f.rep) ] | |
else: | |
raise PolynomialError('multivariate polynomials not supported') | |
def all_terms(f): | |
"""Returns all terms from a ``f``. """ | |
if not f.lev: | |
n = dup_degree(f.rep) | |
if n < 0: | |
return [((0,), f.dom.zero)] | |
else: | |
return [ ((n - i,), c) for i, c in enumerate(f.rep) ] | |
else: | |
raise PolynomialError('multivariate polynomials not supported') | |
def lift(f): | |
"""Convert algebraic coefficients to rationals. """ | |
return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom) | |
def deflate(f): | |
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ | |
J, F = dmp_deflate(f.rep, f.lev, f.dom) | |
return J, f.per(F) | |
def inject(f, front=False): | |
"""Inject ground domain generators into ``f``. """ | |
F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front) | |
return f.__class__(F, f.dom.dom, lev) | |
def eject(f, dom, front=False): | |
"""Eject selected generators into the ground domain. """ | |
F = dmp_eject(f.rep, f.lev, dom, front=front) | |
return f.__class__(F, dom, f.lev - len(dom.symbols)) | |
def exclude(f): | |
r""" | |
Remove useless generators from ``f``. | |
Returns the removed generators and the new excluded ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.polyclasses import DMP | |
>>> from sympy.polys.domains import ZZ | |
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude() | |
([2], DMP([[1], [1, 2]], ZZ, None)) | |
""" | |
J, F, u = dmp_exclude(f.rep, f.lev, f.dom) | |
return J, f.__class__(F, f.dom, u) | |
def permute(f, P): | |
r""" | |
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. | |
Examples | |
======== | |
>>> from sympy.polys.polyclasses import DMP | |
>>> from sympy.polys.domains import ZZ | |
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2]) | |
DMP([[[2], []], [[1, 0], []]], ZZ, None) | |
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0]) | |
DMP([[[1], []], [[2, 0], []]], ZZ, None) | |
""" | |
return f.per(dmp_permute(f.rep, P, f.lev, f.dom)) | |
def terms_gcd(f): | |
"""Remove GCD of terms from the polynomial ``f``. """ | |
J, F = dmp_terms_gcd(f.rep, f.lev, f.dom) | |
return J, f.per(F) | |
def add_ground(f, c): | |
"""Add an element of the ground domain to ``f``. """ | |
return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) | |
def sub_ground(f, c): | |
"""Subtract an element of the ground domain from ``f``. """ | |
return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) | |
def mul_ground(f, c): | |
"""Multiply ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) | |
def quo_ground(f, c): | |
"""Quotient of ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) | |
def exquo_ground(f, c): | |
"""Exact quotient of ``f`` by a an element of the ground domain. """ | |
return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) | |
def abs(f): | |
"""Make all coefficients in ``f`` positive. """ | |
return f.per(dmp_abs(f.rep, f.lev, f.dom)) | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
return f.per(dmp_neg(f.rep, f.lev, f.dom)) | |
def add(f, g): | |
"""Add two multivariate polynomials ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_add(F, G, lev, dom)) | |
def sub(f, g): | |
"""Subtract two multivariate polynomials ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_sub(F, G, lev, dom)) | |
def mul(f, g): | |
"""Multiply two multivariate polynomials ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_mul(F, G, lev, dom)) | |
def sqr(f): | |
"""Square a multivariate polynomial ``f``. """ | |
return f.per(dmp_sqr(f.rep, f.lev, f.dom)) | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if isinstance(n, int): | |
return f.per(dmp_pow(f.rep, n, f.lev, f.dom)) | |
else: | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
def pdiv(f, g): | |
"""Polynomial pseudo-division of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
q, r = dmp_pdiv(F, G, lev, dom) | |
return per(q), per(r) | |
def prem(f, g): | |
"""Polynomial pseudo-remainder of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_prem(F, G, lev, dom)) | |
def pquo(f, g): | |
"""Polynomial pseudo-quotient of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_pquo(F, G, lev, dom)) | |
def pexquo(f, g): | |
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_pexquo(F, G, lev, dom)) | |
def div(f, g): | |
"""Polynomial division with remainder of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
q, r = dmp_div(F, G, lev, dom) | |
return per(q), per(r) | |
def rem(f, g): | |
"""Computes polynomial remainder of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_rem(F, G, lev, dom)) | |
def quo(f, g): | |
"""Computes polynomial quotient of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_quo(F, G, lev, dom)) | |
def exquo(f, g): | |
"""Computes polynomial exact quotient of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
res = per(dmp_exquo(F, G, lev, dom)) | |
if f.ring and res not in f.ring: | |
from sympy.polys.polyerrors import ExactQuotientFailed | |
raise ExactQuotientFailed(f, g, f.ring) | |
return res | |
def degree(f, j=0): | |
"""Returns the leading degree of ``f`` in ``x_j``. """ | |
if isinstance(j, int): | |
return dmp_degree_in(f.rep, j, f.lev) | |
else: | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
def degree_list(f): | |
"""Returns a list of degrees of ``f``. """ | |
return dmp_degree_list(f.rep, f.lev) | |
def total_degree(f): | |
"""Returns the total degree of ``f``. """ | |
return max(sum(m) for m in f.monoms()) | |
def homogenize(f, s): | |
"""Return homogeneous polynomial of ``f``""" | |
td = f.total_degree() | |
result = {} | |
new_symbol = (s == len(f.terms()[0][0])) | |
for term in f.terms(): | |
d = sum(term[0]) | |
if d < td: | |
i = td - d | |
else: | |
i = 0 | |
if new_symbol: | |
result[term[0] + (i,)] = term[1] | |
else: | |
l = list(term[0]) | |
l[s] += i | |
result[tuple(l)] = term[1] | |
return DMP(result, f.dom, f.lev + int(new_symbol), f.ring) | |
def homogeneous_order(f): | |
"""Returns the homogeneous order of ``f``. """ | |
if f.is_zero: | |
return -oo | |
monoms = f.monoms() | |
tdeg = sum(monoms[0]) | |
for monom in monoms: | |
_tdeg = sum(monom) | |
if _tdeg != tdeg: | |
return None | |
return tdeg | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
return dmp_ground_LC(f.rep, f.lev, f.dom) | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
return dmp_ground_TC(f.rep, f.lev, f.dom) | |
def nth(f, *N): | |
"""Returns the ``n``-th coefficient of ``f``. """ | |
if all(isinstance(n, int) for n in N): | |
return dmp_ground_nth(f.rep, N, f.lev, f.dom) | |
else: | |
raise TypeError("a sequence of integers expected") | |
def max_norm(f): | |
"""Returns maximum norm of ``f``. """ | |
return dmp_max_norm(f.rep, f.lev, f.dom) | |
def l1_norm(f): | |
"""Returns l1 norm of ``f``. """ | |
return dmp_l1_norm(f.rep, f.lev, f.dom) | |
def l2_norm_squared(f): | |
"""Return squared l2 norm of ``f``. """ | |
return dmp_l2_norm_squared(f.rep, f.lev, f.dom) | |
def clear_denoms(f): | |
"""Clear denominators, but keep the ground domain. """ | |
coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom) | |
return coeff, f.per(F) | |
def integrate(f, m=1, j=0): | |
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ | |
if not isinstance(m, int): | |
raise TypeError("``int`` expected, got %s" % type(m)) | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom)) | |
def diff(f, m=1, j=0): | |
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """ | |
if not isinstance(m, int): | |
raise TypeError("``int`` expected, got %s" % type(m)) | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom)) | |
def eval(f, a, j=0): | |
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """ | |
if not isinstance(j, int): | |
raise TypeError("``int`` expected, got %s" % type(j)) | |
return f.per(dmp_eval_in(f.rep, | |
f.dom.convert(a), j, f.lev, f.dom), kill=True) | |
def half_gcdex(f, g): | |
"""Half extended Euclidean algorithm, if univariate. """ | |
lev, dom, per, F, G = f.unify(g) | |
if not lev: | |
s, h = dup_half_gcdex(F, G, dom) | |
return per(s), per(h) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def gcdex(f, g): | |
"""Extended Euclidean algorithm, if univariate. """ | |
lev, dom, per, F, G = f.unify(g) | |
if not lev: | |
s, t, h = dup_gcdex(F, G, dom) | |
return per(s), per(t), per(h) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def invert(f, g): | |
"""Invert ``f`` modulo ``g``, if possible. """ | |
lev, dom, per, F, G = f.unify(g) | |
if not lev: | |
return per(dup_invert(F, G, dom)) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def revert(f, n): | |
"""Compute ``f**(-1)`` mod ``x**n``. """ | |
if not f.lev: | |
return f.per(dup_revert(f.rep, n, f.dom)) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def subresultants(f, g): | |
"""Computes subresultant PRS sequence of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
R = dmp_subresultants(F, G, lev, dom) | |
return list(map(per, R)) | |
def resultant(f, g, includePRS=False): | |
"""Computes resultant of ``f`` and ``g`` via PRS. """ | |
lev, dom, per, F, G = f.unify(g) | |
if includePRS: | |
res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS) | |
return per(res, kill=True), list(map(per, R)) | |
return per(dmp_resultant(F, G, lev, dom), kill=True) | |
def discriminant(f): | |
"""Computes discriminant of ``f``. """ | |
return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True) | |
def cofactors(f, g): | |
"""Returns GCD of ``f`` and ``g`` and their cofactors. """ | |
lev, dom, per, F, G = f.unify(g) | |
h, cff, cfg = dmp_inner_gcd(F, G, lev, dom) | |
return per(h), per(cff), per(cfg) | |
def gcd(f, g): | |
"""Returns polynomial GCD of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_gcd(F, G, lev, dom)) | |
def lcm(f, g): | |
"""Returns polynomial LCM of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_lcm(F, G, lev, dom)) | |
def cancel(f, g, include=True): | |
"""Cancel common factors in a rational function ``f/g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
if include: | |
F, G = dmp_cancel(F, G, lev, dom, include=True) | |
else: | |
cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False) | |
F, G = per(F), per(G) | |
if include: | |
return F, G | |
else: | |
return cF, cG, F, G | |
def trunc(f, p): | |
"""Reduce ``f`` modulo a constant ``p``. """ | |
return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom)) | |
def monic(f): | |
"""Divides all coefficients by ``LC(f)``. """ | |
return f.per(dmp_ground_monic(f.rep, f.lev, f.dom)) | |
def content(f): | |
"""Returns GCD of polynomial coefficients. """ | |
return dmp_ground_content(f.rep, f.lev, f.dom) | |
def primitive(f): | |
"""Returns content and a primitive form of ``f``. """ | |
cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom) | |
return cont, f.per(F) | |
def compose(f, g): | |
"""Computes functional composition of ``f`` and ``g``. """ | |
lev, dom, per, F, G = f.unify(g) | |
return per(dmp_compose(F, G, lev, dom)) | |
def decompose(f): | |
"""Computes functional decomposition of ``f``. """ | |
if not f.lev: | |
return list(map(f.per, dup_decompose(f.rep, f.dom))) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def shift(f, a): | |
"""Efficiently compute Taylor shift ``f(x + a)``. """ | |
if not f.lev: | |
return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom)) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def transform(f, p, q): | |
"""Evaluate functional transformation ``q**n * f(p/q)``.""" | |
if f.lev: | |
raise ValueError('univariate polynomial expected') | |
lev, dom, per, P, Q = p.unify(q) | |
lev, dom, per, F, P = f.unify(per(P, dom, lev)) | |
lev, dom, per, F, Q = per(F, dom, lev).unify(per(Q, dom, lev)) | |
if not lev: | |
return per(dup_transform(F, P, Q, dom)) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def sturm(f): | |
"""Computes the Sturm sequence of ``f``. """ | |
if not f.lev: | |
return list(map(f.per, dup_sturm(f.rep, f.dom))) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def cauchy_upper_bound(f): | |
"""Computes the Cauchy upper bound on the roots of ``f``. """ | |
if not f.lev: | |
return dup_cauchy_upper_bound(f.rep, f.dom) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def cauchy_lower_bound(f): | |
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """ | |
if not f.lev: | |
return dup_cauchy_lower_bound(f.rep, f.dom) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def mignotte_sep_bound_squared(f): | |
"""Computes the squared Mignotte bound on root separations of ``f``. """ | |
if not f.lev: | |
return dup_mignotte_sep_bound_squared(f.rep, f.dom) | |
else: | |
raise ValueError('univariate polynomial expected') | |
def gff_list(f): | |
"""Computes greatest factorial factorization of ``f``. """ | |
if not f.lev: | |
return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ] | |
else: | |
raise ValueError('univariate polynomial expected') | |
def norm(f): | |
"""Computes ``Norm(f)``.""" | |
r = dmp_norm(f.rep, f.lev, f.dom) | |
return f.per(r, dom=f.dom.dom) | |
def sqf_norm(f): | |
"""Computes square-free norm of ``f``. """ | |
s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom) | |
return s, f.per(g), f.per(r, dom=f.dom.dom) | |
def sqf_part(f): | |
"""Computes square-free part of ``f``. """ | |
return f.per(dmp_sqf_part(f.rep, f.lev, f.dom)) | |
def sqf_list(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all) | |
return coeff, [ (f.per(g), k) for g, k in factors ] | |
def sqf_list_include(f, all=False): | |
"""Returns a list of square-free factors of ``f``. """ | |
factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all) | |
return [ (f.per(g), k) for g, k in factors ] | |
def factor_list(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom) | |
return coeff, [ (f.per(g), k) for g, k in factors ] | |
def factor_list_include(f): | |
"""Returns a list of irreducible factors of ``f``. """ | |
factors = dmp_factor_list_include(f.rep, f.lev, f.dom) | |
return [ (f.per(g), k) for g, k in factors ] | |
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): | |
"""Compute isolating intervals for roots of ``f``. """ | |
if not f.lev: | |
if not all: | |
if not sqf: | |
return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
else: | |
return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
else: | |
if not sqf: | |
return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
else: | |
return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) | |
else: | |
raise PolynomialError( | |
"Cannot isolate roots of a multivariate polynomial") | |
def refine_root(f, s, t, eps=None, steps=None, fast=False): | |
""" | |
Refine an isolating interval to the given precision. | |
``eps`` should be a rational number. | |
""" | |
if not f.lev: | |
return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast) | |
else: | |
raise PolynomialError( | |
"Cannot refine a root of a multivariate polynomial") | |
def count_real_roots(f, inf=None, sup=None): | |
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """ | |
return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup) | |
def count_complex_roots(f, inf=None, sup=None): | |
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """ | |
return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup) | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero polynomial. """ | |
return dmp_zero_p(f.rep, f.lev) | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit polynomial. """ | |
return dmp_one_p(f.rep, f.lev, f.dom) | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
return dmp_ground_p(f.rep, None, f.lev) | |
def is_sqf(f): | |
"""Returns ``True`` if ``f`` is a square-free polynomial. """ | |
return dmp_sqf_p(f.rep, f.lev, f.dom) | |
def is_monic(f): | |
"""Returns ``True`` if the leading coefficient of ``f`` is one. """ | |
return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom)) | |
def is_primitive(f): | |
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ | |
return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom)) | |
def is_linear(f): | |
"""Returns ``True`` if ``f`` is linear in all its variables. """ | |
return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) | |
def is_quadratic(f): | |
"""Returns ``True`` if ``f`` is quadratic in all its variables. """ | |
return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) | |
def is_monomial(f): | |
"""Returns ``True`` if ``f`` is zero or has only one term. """ | |
return len(f.to_dict()) <= 1 | |
def is_homogeneous(f): | |
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """ | |
return f.homogeneous_order() is not None | |
def is_irreducible(f): | |
"""Returns ``True`` if ``f`` has no factors over its domain. """ | |
return dmp_irreducible_p(f.rep, f.lev, f.dom) | |
def is_cyclotomic(f): | |
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """ | |
if not f.lev: | |
return dup_cyclotomic_p(f.rep, f.dom) | |
else: | |
return False | |
def __abs__(f): | |
return f.abs() | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if not isinstance(g, DMP): | |
try: | |
g = f.per(dmp_ground(f.dom.convert(g), f.lev)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
g = f.ring.convert(g) | |
except (CoercionFailed, NotImplementedError): | |
return NotImplemented | |
return f.add(g) | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if not isinstance(g, DMP): | |
try: | |
g = f.per(dmp_ground(f.dom.convert(g), f.lev)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
g = f.ring.convert(g) | |
except (CoercionFailed, NotImplementedError): | |
return NotImplemented | |
return f.sub(g) | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, DMP): | |
return f.mul(g) | |
else: | |
try: | |
return f.mul_ground(g) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.mul(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __truediv__(f, g): | |
if isinstance(g, DMP): | |
return f.exquo(g) | |
else: | |
try: | |
return f.mul_ground(g) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.exquo(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __rtruediv__(f, g): | |
if isinstance(g, DMP): | |
return g.exquo(f) | |
elif f.ring is not None: | |
try: | |
return f.ring.convert(g).exquo(f) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __pow__(f, n): | |
return f.pow(n) | |
def __divmod__(f, g): | |
return f.div(g) | |
def __mod__(f, g): | |
return f.rem(g) | |
def __floordiv__(f, g): | |
if isinstance(g, DMP): | |
return f.quo(g) | |
else: | |
try: | |
return f.quo_ground(g) | |
except TypeError: | |
return NotImplemented | |
def __eq__(f, g): | |
try: | |
_, _, _, F, G = f.unify(g) | |
if f.lev == g.lev: | |
return F == G | |
except UnificationFailed: | |
pass | |
return False | |
def __ne__(f, g): | |
return not f == g | |
def eq(f, g, strict=False): | |
if not strict: | |
return f == g | |
else: | |
return f._strict_eq(g) | |
def ne(f, g, strict=False): | |
return not f.eq(g, strict=strict) | |
def _strict_eq(f, g): | |
return isinstance(g, f.__class__) and f.lev == g.lev \ | |
and f.dom == g.dom \ | |
and f.rep == g.rep | |
def __lt__(f, g): | |
_, _, _, F, G = f.unify(g) | |
return F < G | |
def __le__(f, g): | |
_, _, _, F, G = f.unify(g) | |
return F <= G | |
def __gt__(f, g): | |
_, _, _, F, G = f.unify(g) | |
return F > G | |
def __ge__(f, g): | |
_, _, _, F, G = f.unify(g) | |
return F >= G | |
def __bool__(f): | |
return not dmp_zero_p(f.rep, f.lev) | |
def init_normal_DMF(num, den, lev, dom): | |
return DMF(dmp_normal(num, lev, dom), | |
dmp_normal(den, lev, dom), dom, lev) | |
class DMF(PicklableWithSlots, CantSympify): | |
"""Dense Multivariate Fractions over `K`. """ | |
__slots__ = ('num', 'den', 'lev', 'dom', 'ring') | |
def __init__(self, rep, dom, lev=None, ring=None): | |
num, den, lev = self._parse(rep, dom, lev) | |
num, den = dmp_cancel(num, den, lev, dom) | |
self.num = num | |
self.den = den | |
self.lev = lev | |
self.dom = dom | |
self.ring = ring | |
def new(cls, rep, dom, lev=None, ring=None): | |
num, den, lev = cls._parse(rep, dom, lev) | |
obj = object.__new__(cls) | |
obj.num = num | |
obj.den = den | |
obj.lev = lev | |
obj.dom = dom | |
obj.ring = ring | |
return obj | |
def _parse(cls, rep, dom, lev=None): | |
if isinstance(rep, tuple): | |
num, den = rep | |
if lev is not None: | |
if isinstance(num, dict): | |
num = dmp_from_dict(num, lev, dom) | |
if isinstance(den, dict): | |
den = dmp_from_dict(den, lev, dom) | |
else: | |
num, num_lev = dmp_validate(num) | |
den, den_lev = dmp_validate(den) | |
if num_lev == den_lev: | |
lev = num_lev | |
else: | |
raise ValueError('inconsistent number of levels') | |
if dmp_zero_p(den, lev): | |
raise ZeroDivisionError('fraction denominator') | |
if dmp_zero_p(num, lev): | |
den = dmp_one(lev, dom) | |
else: | |
if dmp_negative_p(den, lev, dom): | |
num = dmp_neg(num, lev, dom) | |
den = dmp_neg(den, lev, dom) | |
else: | |
num = rep | |
if lev is not None: | |
if isinstance(num, dict): | |
num = dmp_from_dict(num, lev, dom) | |
elif not isinstance(num, list): | |
num = dmp_ground(dom.convert(num), lev) | |
else: | |
num, lev = dmp_validate(num) | |
den = dmp_one(lev, dom) | |
return num, den, lev | |
def __repr__(f): | |
return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den, | |
f.dom, f.ring) | |
def __hash__(f): | |
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev), | |
dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring)) | |
def poly_unify(f, g): | |
"""Unify a multivariate fraction and a polynomial. """ | |
if not isinstance(g, DMP) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom and f.ring == g.ring: | |
return (f.lev, f.dom, f.per, (f.num, f.den), g.rep) | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
ring = f.ring | |
if g.ring is not None: | |
if ring is not None: | |
ring = ring.unify(g.ring) | |
else: | |
ring = g.ring | |
F = (dmp_convert(f.num, lev, f.dom, dom), | |
dmp_convert(f.den, lev, f.dom, dom)) | |
G = dmp_convert(g.rep, lev, g.dom, dom) | |
def per(num, den, cancel=True, kill=False, lev=lev): | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev = lev - 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
return f.__class__.new((num, den), dom, lev, ring=ring) | |
return lev, dom, per, F, G | |
def frac_unify(f, g): | |
"""Unify representations of two multivariate fractions. """ | |
if not isinstance(g, DMF) or f.lev != g.lev: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom and f.ring == g.ring: | |
return (f.lev, f.dom, f.per, (f.num, f.den), | |
(g.num, g.den)) | |
else: | |
lev, dom = f.lev, f.dom.unify(g.dom) | |
ring = f.ring | |
if g.ring is not None: | |
if ring is not None: | |
ring = ring.unify(g.ring) | |
else: | |
ring = g.ring | |
F = (dmp_convert(f.num, lev, f.dom, dom), | |
dmp_convert(f.den, lev, f.dom, dom)) | |
G = (dmp_convert(g.num, lev, g.dom, dom), | |
dmp_convert(g.den, lev, g.dom, dom)) | |
def per(num, den, cancel=True, kill=False, lev=lev): | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev = lev - 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
return f.__class__.new((num, den), dom, lev, ring=ring) | |
return lev, dom, per, F, G | |
def per(f, num, den, cancel=True, kill=False, ring=None): | |
"""Create a DMF out of the given representation. """ | |
lev, dom = f.lev, f.dom | |
if kill: | |
if not lev: | |
return num/den | |
else: | |
lev -= 1 | |
if cancel: | |
num, den = dmp_cancel(num, den, lev, dom) | |
if ring is None: | |
ring = f.ring | |
return f.__class__.new((num, den), dom, lev, ring=ring) | |
def half_per(f, rep, kill=False): | |
"""Create a DMP out of the given representation. """ | |
lev = f.lev | |
if kill: | |
if not lev: | |
return rep | |
else: | |
lev -= 1 | |
return DMP(rep, f.dom, lev) | |
def zero(cls, lev, dom, ring=None): | |
return cls.new(0, dom, lev, ring=ring) | |
def one(cls, lev, dom, ring=None): | |
return cls.new(1, dom, lev, ring=ring) | |
def numer(f): | |
"""Returns the numerator of ``f``. """ | |
return f.half_per(f.num) | |
def denom(f): | |
"""Returns the denominator of ``f``. """ | |
return f.half_per(f.den) | |
def cancel(f): | |
"""Remove common factors from ``f.num`` and ``f.den``. """ | |
return f.per(f.num, f.den) | |
def neg(f): | |
"""Negate all coefficients in ``f``. """ | |
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False) | |
def add(f, g): | |
"""Add two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_add(dmp_mul(F_num, G_den, lev, dom), | |
dmp_mul(F_den, G_num, lev, dom), lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def sub(f, g): | |
"""Subtract two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom), | |
dmp_mul(F_den, G_num, lev, dom), lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def mul(f, g): | |
"""Multiply two multivariate fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = dmp_mul(F_num, G, lev, dom), F_den | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_mul(F_num, G_num, lev, dom) | |
den = dmp_mul(F_den, G_den, lev, dom) | |
return per(num, den) | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if isinstance(n, int): | |
num, den = f.num, f.den | |
if n < 0: | |
num, den, n = den, num, -n | |
return f.per(dmp_pow(num, n, f.lev, f.dom), | |
dmp_pow(den, n, f.lev, f.dom), cancel=False) | |
else: | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
def quo(f, g): | |
"""Computes quotient of fractions ``f`` and ``g``. """ | |
if isinstance(g, DMP): | |
lev, dom, per, (F_num, F_den), G = f.poly_unify(g) | |
num, den = F_num, dmp_mul(F_den, G, lev, dom) | |
else: | |
lev, dom, per, F, G = f.frac_unify(g) | |
(F_num, F_den), (G_num, G_den) = F, G | |
num = dmp_mul(F_num, G_den, lev, dom) | |
den = dmp_mul(F_den, G_num, lev, dom) | |
res = per(num, den) | |
if f.ring is not None and res not in f.ring: | |
from sympy.polys.polyerrors import ExactQuotientFailed | |
raise ExactQuotientFailed(f, g, f.ring) | |
return res | |
exquo = quo | |
def invert(f, check=True): | |
"""Computes inverse of a fraction ``f``. """ | |
if check and f.ring is not None and not f.ring.is_unit(f): | |
raise NotReversible(f, f.ring) | |
res = f.per(f.den, f.num, cancel=False) | |
return res | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero fraction. """ | |
return dmp_zero_p(f.num, f.lev) | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit fraction. """ | |
return dmp_one_p(f.num, f.lev, f.dom) and \ | |
dmp_one_p(f.den, f.lev, f.dom) | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.add(g) | |
try: | |
return f.add(f.half_per(g)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.add(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.sub(g) | |
try: | |
return f.sub(f.half_per(g)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.sub(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.mul(g) | |
try: | |
return f.mul(f.half_per(g)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.mul(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __pow__(f, n): | |
return f.pow(n) | |
def __truediv__(f, g): | |
if isinstance(g, (DMP, DMF)): | |
return f.quo(g) | |
try: | |
return f.quo(f.half_per(g)) | |
except TypeError: | |
return NotImplemented | |
except (CoercionFailed, NotImplementedError): | |
if f.ring is not None: | |
try: | |
return f.quo(f.ring.convert(g)) | |
except (CoercionFailed, NotImplementedError): | |
pass | |
return NotImplemented | |
def __rtruediv__(self, g): | |
r = self.invert(check=False)*g | |
if self.ring and r not in self.ring: | |
from sympy.polys.polyerrors import ExactQuotientFailed | |
raise ExactQuotientFailed(g, self, self.ring) | |
return r | |
def __eq__(f, g): | |
try: | |
if isinstance(g, DMP): | |
_, _, _, (F_num, F_den), G = f.poly_unify(g) | |
if f.lev == g.lev: | |
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G | |
else: | |
_, _, _, F, G = f.frac_unify(g) | |
if f.lev == g.lev: | |
return F == G | |
except UnificationFailed: | |
pass | |
return False | |
def __ne__(f, g): | |
try: | |
if isinstance(g, DMP): | |
_, _, _, (F_num, F_den), G = f.poly_unify(g) | |
if f.lev == g.lev: | |
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G) | |
else: | |
_, _, _, F, G = f.frac_unify(g) | |
if f.lev == g.lev: | |
return F != G | |
except UnificationFailed: | |
pass | |
return True | |
def __lt__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F < G | |
def __le__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F <= G | |
def __gt__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F > G | |
def __ge__(f, g): | |
_, _, _, F, G = f.frac_unify(g) | |
return F >= G | |
def __bool__(f): | |
return not dmp_zero_p(f.num, f.lev) | |
def init_normal_ANP(rep, mod, dom): | |
return ANP(dup_normal(rep, dom), | |
dup_normal(mod, dom), dom) | |
class ANP(PicklableWithSlots, CantSympify): | |
"""Dense Algebraic Number Polynomials over a field. """ | |
__slots__ = ('rep', 'mod', 'dom') | |
def __init__(self, rep, mod, dom): | |
# Not possible to check with isinstance | |
if type(rep) is dict: | |
self.rep = dup_from_dict(rep, dom) | |
else: | |
if isinstance(rep, list): | |
rep = [dom.convert(a) for a in rep] | |
else: | |
rep = [dom.convert(rep)] | |
self.rep = dup_strip(rep) | |
if isinstance(mod, DMP): | |
self.mod = mod.rep | |
else: | |
if isinstance(mod, dict): | |
self.mod = dup_from_dict(mod, dom) | |
else: | |
self.mod = dup_strip(mod) | |
self.dom = dom | |
def __repr__(f): | |
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom) | |
def __hash__(f): | |
return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom)) | |
def unify(f, g): | |
"""Unify representations of two algebraic numbers. """ | |
if not isinstance(g, ANP) or f.mod != g.mod: | |
raise UnificationFailed("Cannot unify %s with %s" % (f, g)) | |
if f.dom == g.dom: | |
return f.dom, f.per, f.rep, g.rep, f.mod | |
else: | |
dom = f.dom.unify(g.dom) | |
F = dup_convert(f.rep, f.dom, dom) | |
G = dup_convert(g.rep, g.dom, dom) | |
if dom != f.dom and dom != g.dom: | |
mod = dup_convert(f.mod, f.dom, dom) | |
else: | |
if dom == f.dom: | |
mod = f.mod | |
else: | |
mod = g.mod | |
per = lambda rep: ANP(rep, mod, dom) | |
return dom, per, F, G, mod | |
def per(f, rep, mod=None, dom=None): | |
return ANP(rep, mod or f.mod, dom or f.dom) | |
def zero(cls, mod, dom): | |
return ANP(0, mod, dom) | |
def one(cls, mod, dom): | |
return ANP(1, mod, dom) | |
def to_dict(f): | |
"""Convert ``f`` to a dict representation with native coefficients. """ | |
return dmp_to_dict(f.rep, 0, f.dom) | |
def to_sympy_dict(f): | |
"""Convert ``f`` to a dict representation with SymPy coefficients. """ | |
rep = dmp_to_dict(f.rep, 0, f.dom) | |
for k, v in rep.items(): | |
rep[k] = f.dom.to_sympy(v) | |
return rep | |
def to_list(f): | |
"""Convert ``f`` to a list representation with native coefficients. """ | |
return f.rep | |
def to_sympy_list(f): | |
"""Convert ``f`` to a list representation with SymPy coefficients. """ | |
return [ f.dom.to_sympy(c) for c in f.rep ] | |
def to_tuple(f): | |
""" | |
Convert ``f`` to a tuple representation with native coefficients. | |
This is needed for hashing. | |
""" | |
return dmp_to_tuple(f.rep, 0) | |
def from_list(cls, rep, mod, dom): | |
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom) | |
def neg(f): | |
return f.per(dup_neg(f.rep, f.dom)) | |
def add(f, g): | |
dom, per, F, G, mod = f.unify(g) | |
return per(dup_add(F, G, dom)) | |
def sub(f, g): | |
dom, per, F, G, mod = f.unify(g) | |
return per(dup_sub(F, G, dom)) | |
def mul(f, g): | |
dom, per, F, G, mod = f.unify(g) | |
return per(dup_rem(dup_mul(F, G, dom), mod, dom)) | |
def pow(f, n): | |
"""Raise ``f`` to a non-negative power ``n``. """ | |
if isinstance(n, int): | |
if n < 0: | |
F, n = dup_invert(f.rep, f.mod, f.dom), -n | |
else: | |
F = f.rep | |
return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom)) | |
else: | |
raise TypeError("``int`` expected, got %s" % type(n)) | |
def div(f, g): | |
dom, per, F, G, mod = f.unify(g) | |
return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom)) | |
def rem(f, g): | |
dom, _, _, G, mod = f.unify(g) | |
s, h = dup_half_gcdex(G, mod, dom) | |
if h == [dom.one]: | |
return f.zero(mod, dom) | |
else: | |
raise NotInvertible("zero divisor") | |
def quo(f, g): | |
dom, per, F, G, mod = f.unify(g) | |
return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)) | |
exquo = quo | |
def LC(f): | |
"""Returns the leading coefficient of ``f``. """ | |
return dup_LC(f.rep, f.dom) | |
def TC(f): | |
"""Returns the trailing coefficient of ``f``. """ | |
return dup_TC(f.rep, f.dom) | |
def is_zero(f): | |
"""Returns ``True`` if ``f`` is a zero algebraic number. """ | |
return not f | |
def is_one(f): | |
"""Returns ``True`` if ``f`` is a unit algebraic number. """ | |
return f.rep == [f.dom.one] | |
def is_ground(f): | |
"""Returns ``True`` if ``f`` is an element of the ground domain. """ | |
return not f.rep or len(f.rep) == 1 | |
def __pos__(f): | |
return f | |
def __neg__(f): | |
return f.neg() | |
def __add__(f, g): | |
if isinstance(g, ANP): | |
return f.add(g) | |
else: | |
try: | |
return f.add(f.per(g)) | |
except (CoercionFailed, TypeError): | |
return NotImplemented | |
def __radd__(f, g): | |
return f.__add__(g) | |
def __sub__(f, g): | |
if isinstance(g, ANP): | |
return f.sub(g) | |
else: | |
try: | |
return f.sub(f.per(g)) | |
except (CoercionFailed, TypeError): | |
return NotImplemented | |
def __rsub__(f, g): | |
return (-f).__add__(g) | |
def __mul__(f, g): | |
if isinstance(g, ANP): | |
return f.mul(g) | |
else: | |
try: | |
return f.mul(f.per(g)) | |
except (CoercionFailed, TypeError): | |
return NotImplemented | |
def __rmul__(f, g): | |
return f.__mul__(g) | |
def __pow__(f, n): | |
return f.pow(n) | |
def __divmod__(f, g): | |
return f.div(g) | |
def __mod__(f, g): | |
return f.rem(g) | |
def __truediv__(f, g): | |
if isinstance(g, ANP): | |
return f.quo(g) | |
else: | |
try: | |
return f.quo(f.per(g)) | |
except (CoercionFailed, TypeError): | |
return NotImplemented | |
def __eq__(f, g): | |
try: | |
_, _, F, G, _ = f.unify(g) | |
return F == G | |
except UnificationFailed: | |
return False | |
def __ne__(f, g): | |
try: | |
_, _, F, G, _ = f.unify(g) | |
return F != G | |
except UnificationFailed: | |
return True | |
def __lt__(f, g): | |
_, _, F, G, _ = f.unify(g) | |
return F < G | |
def __le__(f, g): | |
_, _, F, G, _ = f.unify(g) | |
return F <= G | |
def __gt__(f, g): | |
_, _, F, G, _ = f.unify(g) | |
return F > G | |
def __ge__(f, g): | |
_, _, F, G, _ = f.unify(g) | |
return F >= G | |
def __bool__(f): | |
return bool(f.rep) | |