|
import abc |
|
import ast |
|
import logging |
|
import random |
|
import re |
|
from collections.abc import Callable |
|
from copy import deepcopy |
|
from dataclasses import asdict, dataclass |
|
from inspect import getsource |
|
from typing import ( |
|
Any, |
|
Dict, |
|
Iterable, |
|
Iterator, |
|
List, |
|
Literal, |
|
Mapping, |
|
Optional, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
import datasets |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from lm_eval import utils |
|
from lm_eval.api import samplers |
|
from lm_eval.api.instance import Instance, OutputType |
|
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity |
|
from lm_eval.api.registry import ( |
|
AGGREGATION_REGISTRY, |
|
DEFAULT_METRIC_REGISTRY, |
|
get_aggregation, |
|
get_metric, |
|
get_metric_aggregation, |
|
is_higher_better, |
|
) |
|
from lm_eval.caching.cache import load_from_cache, save_to_cache |
|
from lm_eval.filters import build_filter_ensemble |
|
from lm_eval.prompts import get_prompt |
|
|
|
|
|
ALL_OUTPUT_TYPES = [ |
|
"loglikelihood", |
|
"multiple_choice", |
|
"loglikelihood_rolling", |
|
"generate_until", |
|
] |
|
|
|
eval_logger = logging.getLogger("lm-eval") |
|
|
|
|
|
@dataclass |
|
class TaskConfig(dict): |
|
|
|
task: Optional[str] = None |
|
task_alias: Optional[str] = None |
|
group: Optional[Union[str, list]] = None |
|
group_alias: Optional[Union[str, list]] = None |
|
|
|
|
|
|
|
dataset_path: Optional[str] = None |
|
dataset_name: Optional[str] = None |
|
dataset_kwargs: Optional[dict] = None |
|
training_split: Optional[str] = None |
|
validation_split: Optional[str] = None |
|
test_split: Optional[str] = None |
|
fewshot_split: Optional[ |
|
str |
|
] = None |
|
|
|
|
|
process_docs: Optional[Callable] = None |
|
doc_to_text: Optional[Union[Callable, str]] = None |
|
doc_to_target: Optional[Union[Callable, str]] = None |
|
doc_to_choice: Optional[Union[Callable, str, dict, list]] = None |
|
process_results: Optional[Union[Callable, str]] = None |
|
use_prompt: Optional[str] = None |
|
description: str = "" |
|
target_delimiter: str = " " |
|
fewshot_delimiter: str = "\n\n" |
|
fewshot_config: Optional[dict] = None |
|
|
|
num_fewshot: Optional[int] = None |
|
|
|
metric_list: Optional[list] = None |
|
output_type: OutputType = "generate_until" |
|
generation_kwargs: Optional[dict] = None |
|
repeats: int = 1 |
|
filter_list: Optional[Union[str, list]] = None |
|
should_decontaminate: bool = False |
|
doc_to_decontamination_query: Optional[str] = None |
|
metadata: Optional[ |
|
dict |
|
] = None |
|
|
|
def __post_init__(self) -> None: |
|
if self.generation_kwargs is not None: |
|
if self.output_type != "generate_until": |
|
raise ValueError( |
|
f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!" |
|
) |
|
|
|
if "temperature" in self.generation_kwargs: |
|
self.generation_kwargs["temperature"] = float( |
|
self.generation_kwargs["temperature"] |
|
) |
|
|
|
if "until" not in self.generation_kwargs: |
|
self.generation_kwargs["until"] = [self.fewshot_delimiter] |
|
else: |
|
if self.output_type == "generate_until": |
|
|
|
self.generation_kwargs = { |
|
"until": ( |
|
None |
|
if self.fewshot_delimiter is None |
|
else [self.fewshot_delimiter] |
|
), |
|
"do_sample": False, |
|
} |
|
|
|
def __getitem__(self, item): |
|
return getattr(self, item) |
|
|
|
def __setitem__(self, item, value): |
|
return setattr(self, item, value) |
|
|
|
def to_dict(self, keep_callable: bool = False) -> dict: |
|
"""dumps the current config as a dictionary object, as a printable format. |
|
null fields will not be printed. |
|
Used for dumping results alongside full task configuration |
|
|
|
:return: dict |
|
A printable dictionary version of the TaskConfig object. |
|
|
|
# TODO: should any default value in the TaskConfig not be printed? |
|
""" |
|
cfg_dict = asdict(self) |
|
|
|
for k, v in list(cfg_dict.items()): |
|
if v is None: |
|
cfg_dict.pop(k) |
|
elif k == "metric_list": |
|
for metric_dict in v: |
|
for metric_key, metric_value in metric_dict.items(): |
|
if callable(metric_value): |
|
metric_dict[metric_key] = self.serialize_function( |
|
metric_value, keep_callable=keep_callable |
|
) |
|
cfg_dict[k] = v |
|
elif callable(v): |
|
cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable) |
|
return cfg_dict |
|
|
|
def serialize_function( |
|
self, value: Union[Callable, str], keep_callable=False |
|
) -> Union[Callable, str]: |
|
"""Serializes a given function or string. |
|
|
|
If 'keep_callable' is True, the original callable is returned. |
|
Otherwise, attempts to return the source code of the callable using 'getsource'. |
|
""" |
|
if keep_callable: |
|
return value |
|
else: |
|
try: |
|
return getsource(value) |
|
except (TypeError, OSError): |
|
return str(value) |
|
|
|
|
|
class Task(abc.ABC): |
|
"""A task represents an entire benchmark including its dataset, problems, |
|
answers, and evaluation methods. See BoolQ for a simple example implementation |
|
|
|
A `doc` can be any python object which represents one instance of evaluation. |
|
This is usually a dictionary e.g. |
|
{"question": ..., "answer": ...} or |
|
{"question": ..., question, answer) |
|
""" |
|
|
|
VERSION: Optional[Union[int, str]] = None |
|
|
|
|
|
|
|
DATASET_PATH: Optional[str] = None |
|
|
|
|
|
DATASET_NAME: Optional[str] = None |
|
|
|
OUTPUT_TYPE: Optional[OutputType] = None |
|
|
|
def __init__( |
|
self, |
|
data_dir: Optional[str] = None, |
|
cache_dir: Optional[str] = None, |
|
download_mode: Optional[datasets.DownloadMode] = None, |
|
config: Optional[Mapping] = None, |
|
) -> None: |
|
""" |
|
:param data_dir: str |
|
Stores the path to a local folder containing the `Task`'s data files. |
|
Use this to specify the path to manually downloaded data (usually when |
|
the dataset is not publicly accessible). |
|
:param cache_dir: str |
|
The directory to read/write the `Task` dataset. This follows the |
|
HuggingFace `datasets` API with the default cache directory located at: |
|
`~/.cache/huggingface/datasets` |
|
NOTE: You can change the cache location globally for a given process |
|
to another directory: |
|
`export HF_DATASETS_CACHE="/path/to/another/directory"` |
|
:param download_mode: datasets.DownloadMode |
|
How to treat pre-existing `Task` downloads and data. |
|
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS` |
|
Reuse download and reuse dataset. |
|
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS` |
|
Reuse download with fresh dataset. |
|
- `datasets.DownloadMode.FORCE_REDOWNLOAD` |
|
Fresh download and fresh dataset. |
|
""" |
|
self.download(data_dir, cache_dir, download_mode) |
|
self._training_docs: Optional[list] = None |
|
self._fewshot_docs: Optional[list] = None |
|
self._instances: Optional[List[Instance]] = None |
|
|
|
self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig() |
|
|
|
self._filters = [build_filter_ensemble("none", [["take_first", None]])] |
|
|
|
def download( |
|
self, |
|
data_dir: Optional[str] = None, |
|
cache_dir: Optional[str] = None, |
|
download_mode=None, |
|
) -> None: |
|
"""Downloads and returns the task dataset. |
|
Override this method to download the dataset from a custom API. |
|
|
|
:param data_dir: str |
|
Stores the path to a local folder containing the `Task`'s data files. |
|
Use this to specify the path to manually downloaded data (usually when |
|
the dataset is not publicly accessible). |
|
:param cache_dir: str |
|
The directory to read/write the `Task` dataset. This follows the |
|
HuggingFace `datasets` API with the default cache directory located at: |
|
`~/.cache/huggingface/datasets` |
|
NOTE: You can change the cache location globally for a given process |
|
by setting the shell environment variable, `HF_DATASETS_CACHE`, |
|
to another directory: |
|
`export HF_DATASETS_CACHE="/path/to/another/directory"` |
|
:param download_mode: datasets.DownloadMode |
|
How to treat pre-existing `Task` downloads and data. |
|
- `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS` |
|
Reuse download and reuse dataset. |
|
- `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS` |
|
Reuse download with fresh dataset. |
|
- `datasets.DownloadMode.FORCE_REDOWNLOAD` |
|
Fresh download and fresh dataset. |
|
""" |
|
self.dataset = datasets.load_dataset( |
|
path=self.DATASET_PATH, |
|
name=self.DATASET_NAME, |
|
data_dir=data_dir, |
|
cache_dir=cache_dir, |
|
download_mode=download_mode, |
|
) |
|
|
|
@property |
|
def config(self) -> TaskConfig: |
|
"""Returns the TaskConfig associated with this class.""" |
|
return self._config |
|
|
|
@abc.abstractmethod |
|
def has_training_docs(self): |
|
"""Whether the task has a training set""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def has_validation_docs(self): |
|
"""Whether the task has a validation set""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def has_test_docs(self): |
|
"""Whether the task has a test set""" |
|
pass |
|
|
|
def training_docs(self) -> Iterable: |
|
""" |
|
:return: Iterable[obj] |
|
A iterable of any object, that doc_to_text can handle |
|
""" |
|
return [] |
|
|
|
def validation_docs(self) -> Iterable: |
|
""" |
|
:return: Iterable[obj] |
|
A iterable of any object, that doc_to_text can handle |
|
""" |
|
return [] |
|
|
|
def test_docs(self) -> Iterable: |
|
""" |
|
:return: Iterable[obj] |
|
A iterable of any object, that doc_to_text can handle |
|
""" |
|
return [] |
|
|
|
def fewshot_docs(self) -> Iterable: |
|
""" |
|
:return: Iterable[obj] |
|
A iterable of any object, that doc_to_text can handle |
|
""" |
|
if self.has_training_docs(): |
|
return self.training_docs() |
|
elif self.has_validation_docs(): |
|
return self.validation_docs() |
|
else: |
|
eval_logger.warning( |
|
f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False" |
|
", using test_docs as fewshot_docs but this is not recommended." |
|
) |
|
return self.test_docs() |
|
|
|
def _process_doc(self, doc: dict) -> dict: |
|
""" |
|
Override this to process (detokenize, strip, replace, etc.) individual |
|
documents. This can be used in a map over documents of a data split. |
|
E.g. `map(self._process_doc, self.dataset["validation"])` |
|
|
|
:return: dict |
|
The processed version of the specified `doc`. |
|
""" |
|
return doc |
|
|
|
@property |
|
def instances(self) -> List[Instance]: |
|
"""After calling `task.build_all_requests()`, tasks |
|
maintain a list of the dataset instances which will be evaluated. |
|
""" |
|
return self._instances |
|
|
|
def fewshot_examples(self, k, rnd): |
|
if self._training_docs is None: |
|
self._training_docs = list(self.training_docs()) |
|
|
|
return rnd.sample(self._training_docs, k) |
|
|
|
def doc_to_decontamination_query(self, doc): |
|
raise NotImplementedError( |
|
"Override doc_to_decontamination_query with document specific decontamination query." |
|
) |
|
|
|
@abc.abstractmethod |
|
def doc_to_text(self, doc): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def doc_to_target(self, doc): |
|
pass |
|
|
|
def build_all_requests( |
|
self, |
|
*, |
|
limit=None, |
|
rank=None, |
|
world_size=None, |
|
cache_requests=False, |
|
rewrite_requests_cache=False, |
|
) -> None: |
|
"""Build a set of Instances for a task, and store them in task.instances""" |
|
|
|
|
|
og_limit = limit |
|
|
|
cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}" |
|
|
|
cached_instances = load_from_cache(file_name=cache_key) |
|
|
|
if cache_requests and cached_instances and not rewrite_requests_cache: |
|
cached_instances = cached_instances[:limit] |
|
|
|
flattened_instances = [ |
|
instance |
|
for instance_group in cached_instances |
|
for instance in instance_group |
|
] |
|
|
|
self._instances = flattened_instances |
|
return |
|
|
|
eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...") |
|
|
|
instances = [] |
|
|
|
|
|
if ( |
|
cache_requests |
|
and (not cached_instances or rewrite_requests_cache) |
|
and limit is not None |
|
): |
|
limit = None |
|
|
|
doc_id_docs = list( |
|
self.doc_iterator(rank=rank, limit=limit, world_size=world_size) |
|
) |
|
|
|
num_docs = len(doc_id_docs) |
|
|
|
for doc_id, doc in tqdm( |
|
doc_id_docs, |
|
total=num_docs, |
|
): |
|
|
|
fewshot_ctx = self.fewshot_context( |
|
doc, |
|
0 if self.config.num_fewshot is None else self.config.num_fewshot, |
|
) |
|
|
|
|
|
inst = self.construct_requests( |
|
doc=doc, |
|
ctx=fewshot_ctx, |
|
metadata=(self.config["task"], doc_id, self.config.repeats), |
|
) |
|
|
|
if not isinstance(inst, list): |
|
inst = [inst] |
|
|
|
instances.append(inst) |
|
|
|
|
|
|
|
sliced_instances = instances[:og_limit] |
|
|
|
flattened_instances = [ |
|
instance |
|
for instance_group in sliced_instances |
|
for instance in instance_group |
|
] |
|
|
|
self._instances = flattened_instances |
|
|
|
if len(self._instances) == 0: |
|
raise ValueError("task.build_requests() did not find any docs!") |
|
|
|
if cache_requests and (not cached_instances or rewrite_requests_cache): |
|
save_to_cache(file_name=cache_key, obj=instances) |
|
|
|
@abc.abstractmethod |
|
def construct_requests(self, doc, ctx, **kwargs): |
|
"""Uses RequestFactory to construct Requests and returns an iterable of |
|
Requests which will be sent to the LM. |
|
|
|
:param doc: |
|
The document as returned from training_docs, validation_docs, or test_docs. |
|
:param ctx: str |
|
The context string, generated by fewshot_context. This includes the natural |
|
language description, as well as the few shot examples, and the question |
|
part of the document for `doc`. |
|
:param doc_idx: int |
|
The index of a document within `self.test_docs()` or `self.validation_docs()`, |
|
whichever is the main split used. |
|
:param repeats: int |
|
TODO: update this docstring |
|
The number of times each instance in a dataset is inferred on. Defaults to 1, |
|
can be increased for techniques like majority voting. |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def process_results(self, doc, results): |
|
"""Take a single document and the LM results and evaluates, returning a |
|
dict where keys are the names of submetrics and values are the values of |
|
the metric for that one document |
|
|
|
:param doc: |
|
The document as returned from training_docs, validation_docs, or test_docs. |
|
:param results: |
|
The results of the requests created in construct_requests. |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def aggregation(self): |
|
""" |
|
:returns: {str: [metric_score] -> float} |
|
A dictionary where keys are the names of submetrics and values are |
|
functions that aggregate a list of metric scores |
|
""" |
|
pass |
|
|
|
@abc.abstractmethod |
|
def higher_is_better(self): |
|
""" |
|
:returns: {str: bool} |
|
A dictionary where keys are the names of submetrics and values are |
|
whether a higher value of the submetric is better |
|
""" |
|
pass |
|
|
|
def get_config(self, key: str) -> Any: |
|
return getattr(self._config, key, None) |
|
|
|
@classmethod |
|
def count_bytes(cls, doc): |
|
"""Used for byte-level perplexity metrics in rolling loglikelihood""" |
|
return len(doc.encode("utf-8")) |
|
|
|
@classmethod |
|
def count_words(cls, doc): |
|
"""Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!""" |
|
return len(re.split(r"\s+", doc)) |
|
|
|
@utils.positional_deprecated |
|
def fewshot_context( |
|
self, |
|
doc, |
|
num_fewshot, |
|
rnd=random.Random(1234), |
|
description=None, |
|
): |
|
"""Returns a fewshot context string that is made up of a prepended description |
|
(if provided), the `num_fewshot` number of examples, and an appended prompt example. |
|
|
|
:param doc: str |
|
The document as returned from training_docs, validation_docs, or test_docs. |
|
:param num_fewshot: int |
|
The number of fewshot examples to provide in the returned context string. |
|
:param rnd: random.Random |
|
The pseudo-random number generator used to randomly sample examples. |
|
WARNING: This is currently a required arg although it's optionalized with a default `None`. |
|
:param description: str |
|
The task's description that will be prepended to the fewshot examples. |
|
:returns: str |
|
The fewshot context. |
|
""" |
|
if rnd is None: |
|
raise ValueError( |
|
"A `random.Random` generator argument must be provided to `rnd`" |
|
) |
|
|
|
description = description if description else "" |
|
|
|
if num_fewshot == 0: |
|
labeled_examples = "" |
|
else: |
|
|
|
if self.has_training_docs(): |
|
fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd) |
|
else: |
|
if self._fewshot_docs is None: |
|
self._fewshot_docs = list( |
|
self.validation_docs() |
|
if self.has_validation_docs() |
|
else self.test_docs() |
|
) |
|
|
|
fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1) |
|
|
|
|
|
fewshotex = [x for x in fewshotex if x != doc][:num_fewshot] |
|
|
|
labeled_examples = ( |
|
"\n\n".join( |
|
[ |
|
self.doc_to_text(doc) + self.doc_to_target(doc) |
|
for doc in fewshotex |
|
] |
|
) |
|
+ "\n\n" |
|
) |
|
|
|
example = self.doc_to_text(doc) |
|
return description + labeled_examples + example |
|
|
|
def apply_filters(self) -> Optional[List[Instance]]: |
|
"""Iterates over FilterEnsembles and applies them to instances""" |
|
if hasattr(self, "_filters"): |
|
for f in self._filters: |
|
f.apply(self._instances) |
|
else: |
|
eval_logger.warning("No filter defined, passing through instances") |
|
return self._instances |
|
|
|
def dump_config(self) -> dict: |
|
"""Returns the config as a dictionary.""" |
|
|
|
|
|
return self.config.to_dict() |
|
|
|
def set_config(self, key: str, value: Any, update: bool = False) -> None: |
|
"""Set or update the configuration for a given key.""" |
|
if key is None: |
|
raise ValueError("Key must be provided.") |
|
|
|
if update: |
|
current_value = getattr(self._config, key, {}) |
|
if not isinstance(current_value, dict): |
|
raise TypeError( |
|
f"Expected a dict for key '{key}', got {type(current_value).__name__} instead." |
|
) |
|
current_value.update(value) |
|
else: |
|
setattr(self._config, key, value) |
|
|
|
def override_metric(self, metric_name: str) -> None: |
|
""" |
|
Override the default metrics used for evaluation with custom metrics. |
|
|
|
Parameters: |
|
- metric_name (str): The name of the custom metric to override. Should be registered in api.metrics. |
|
""" |
|
( |
|
self._metric_fn_list, |
|
self._aggregation_list, |
|
self._metric_fn_kwargs, |
|
self._higher_is_better, |
|
) = ({}, {}, {}, {}) |
|
self._metric_fn_list[metric_name] = get_metric(metric_name) |
|
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name) |
|
self._higher_is_better[metric_name] = is_higher_better(metric_name) |
|
self._metric_fn_kwargs[metric_name] = {} |
|
if not isinstance(self, ConfigurableTask): |
|
self.process_results = lambda x, y: {metric_name: get_metric(metric_name)} |
|
self.aggregation = lambda: { |
|
metric_name: get_metric_aggregation(metric_name) |
|
} |
|
setattr(self._config, "metric_list", [{"metric": metric_name}]) |
|
setattr(self._config, "process_results", None) |
|
|
|
@property |
|
def eval_docs(self) -> Union[datasets.Dataset, List[dict]]: |
|
if self.has_test_docs(): |
|
return self.test_docs() |
|
elif self.has_validation_docs(): |
|
return self.validation_docs() |
|
else: |
|
raise ValueError( |
|
f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!" |
|
) |
|
|
|
def doc_iterator( |
|
self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1 |
|
) -> Iterator[Tuple[int, Any]]: |
|
limit = int(limit) if limit else None |
|
doc_iterator = utils.create_iterator( |
|
enumerate(self.eval_docs), |
|
rank=int(rank), |
|
limit=limit, |
|
world_size=int(world_size), |
|
) |
|
return doc_iterator |
|
|
|
|
|
class ConfigurableTask(Task): |
|
VERSION = "Yaml" |
|
OUTPUT_TYPE = None |
|
CONFIG = None |
|
|
|
def __init__( |
|
self, |
|
data_dir=None, |
|
cache_dir=None, |
|
download_mode=None, |
|
config: Optional[dict] = None, |
|
) -> None: |
|
|
|
self._config = self.CONFIG |
|
|
|
|
|
if self.config is None: |
|
self._config = TaskConfig(**config) |
|
|
|
else: |
|
if config is not None: |
|
self._config.__dict__.update(config) |
|
|
|
if self.config is None: |
|
raise ValueError( |
|
"Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg" |
|
) |
|
|
|
if isinstance(self.config.metadata, dict): |
|
if "version" in self.config.metadata: |
|
self.VERSION = self.config.metadata["version"] |
|
|
|
if self.config.output_type is not None: |
|
if self.config.output_type not in ALL_OUTPUT_TYPES: |
|
raise ValueError( |
|
f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'" |
|
) |
|
self.OUTPUT_TYPE = self.config.output_type |
|
|
|
if self.config.dataset_path is not None: |
|
self.DATASET_PATH = self.config.dataset_path |
|
|
|
if self.config.dataset_name is not None: |
|
self.DATASET_NAME = self.config.dataset_name |
|
|
|
self._metric_fn_list = {} |
|
self._metric_fn_kwargs = {} |
|
self._aggregation_list = {} |
|
self._higher_is_better = {} |
|
|
|
if self.config.metric_list is None: |
|
|
|
_metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type] |
|
|
|
for metric_name in _metric_list: |
|
self._metric_fn_list[metric_name] = get_metric(metric_name) |
|
self._metric_fn_kwargs[metric_name] = {} |
|
self._aggregation_list[metric_name] = get_metric_aggregation( |
|
metric_name |
|
) |
|
self._higher_is_better[metric_name] = is_higher_better(metric_name) |
|
else: |
|
for metric_config in self.config.metric_list: |
|
if "metric" not in metric_config: |
|
raise ValueError( |
|
"'metric' key not provided for an entry in 'metric_list', must be specified!" |
|
) |
|
metric_name = metric_config["metric"] |
|
kwargs = { |
|
key: metric_config[key] |
|
for key in metric_config |
|
if key |
|
not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"] |
|
} |
|
hf_evaluate_metric = ( |
|
"hf_evaluate" in metric_config |
|
and metric_config["hf_evaluate"] is True |
|
) |
|
|
|
if self.config.process_results is not None: |
|
self._metric_fn_list[metric_name] = None |
|
self._metric_fn_kwargs[metric_name] = {} |
|
elif callable(metric_name): |
|
metric_fn = metric_name.__call__ |
|
metric_name = metric_name.__name__ |
|
self._metric_fn_list[metric_name] = metric_fn |
|
self._metric_fn_kwargs[metric_name] = kwargs |
|
else: |
|
self._metric_fn_list[metric_name] = get_metric( |
|
metric_name, hf_evaluate_metric |
|
) |
|
self._metric_fn_kwargs[metric_name] = kwargs |
|
|
|
if "aggregation" in metric_config: |
|
agg_name = metric_config["aggregation"] |
|
if isinstance(agg_name, str): |
|
self._aggregation_list[metric_name] = get_aggregation(agg_name) |
|
elif callable(agg_name): |
|
self._aggregation_list[metric_name] = metric_config[ |
|
"aggregation" |
|
] |
|
else: |
|
INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()} |
|
metric_agg = get_metric_aggregation(metric_name) |
|
eval_logger.warning( |
|
f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. " |
|
f"using default " |
|
f"aggregation={INV_AGG_REGISTRY[metric_agg]}" |
|
) |
|
self._aggregation_list[metric_name] = metric_agg |
|
|
|
if "higher_is_better" in metric_config: |
|
self._higher_is_better[metric_name] = metric_config[ |
|
"higher_is_better" |
|
] |
|
else: |
|
eval_logger.warning( |
|
f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. " |
|
f"using default " |
|
f"higher_is_better={is_higher_better(metric_name)}" |
|
) |
|
self._higher_is_better[metric_name] = is_higher_better(metric_name) |
|
|
|
self.download(self.config.dataset_kwargs) |
|
self._training_docs = None |
|
self._fewshot_docs = None |
|
|
|
if self.config.filter_list is not None: |
|
self._filters = [] |
|
for filter_config in self.config.filter_list: |
|
filter_name = filter_config["name"] |
|
filter_functions = filter_config["filter"] |
|
components = [] |
|
for function in filter_functions: |
|
kwargs = { |
|
key: function[key] for key in function if key != "function" |
|
} |
|
components.append([function["function"], kwargs]) |
|
filter_pipeline = build_filter_ensemble(filter_name, components) |
|
self._filters.append(filter_pipeline) |
|
else: |
|
self._filters = [build_filter_ensemble("none", [["take_first", None]])] |
|
|
|
if self.config.use_prompt is not None: |
|
eval_logger.info(f"loading prompt {self.config.use_prompt}") |
|
self.prompt = get_prompt( |
|
self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME |
|
) |
|
else: |
|
self.prompt = None |
|
|
|
if self.fewshot_docs() is not None: |
|
self.sampler = samplers.get_sampler( |
|
self.config.fewshot_config.get("sampler", "default") |
|
if self.config.fewshot_config |
|
else "default" |
|
)(list(self.fewshot_docs()), self, rnd=random.Random(1234)) |
|
|
|
self.task_docs = self.eval_docs |
|
|
|
|
|
self.features = list(self.task_docs.features.keys()) |
|
self.multiple_input = 0 |
|
self.multiple_target = 0 |
|
test_doc = self.task_docs[0] |
|
test_text = self.doc_to_text(test_doc) |
|
test_target = self.doc_to_target(test_doc) |
|
|
|
if self.config.doc_to_choice is not None: |
|
test_choice = self.doc_to_choice(test_doc) |
|
if not isinstance(test_choice, list): |
|
eval_logger.error("doc_to_choice must return list") |
|
else: |
|
num_choice = len(test_choice) |
|
|
|
if isinstance(test_text, int): |
|
self.multiple_input = num_choice |
|
else: |
|
test_choice = None |
|
|
|
if isinstance(test_target, list): |
|
self.multiple_target = len(test_target) |
|
else: |
|
if (isinstance(test_target, int)) and (test_choice is not None): |
|
test_target = test_choice[test_target] |
|
else: |
|
test_target = str(test_target) |
|
|
|
if test_choice is not None: |
|
check_choices = test_choice |
|
else: |
|
check_choices = [test_target] |
|
if self.config.doc_to_choice is not None: |
|
for choice in check_choices: |
|
choice_has_whitespace = True if choice[0].isspace() else False |
|
delimiter_has_whitespace = ( |
|
True |
|
if self.config.target_delimiter.rstrip() |
|
!= self.config.target_delimiter |
|
else False |
|
) |
|
|
|
if delimiter_has_whitespace and choice_has_whitespace: |
|
eval_logger.debug( |
|
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace' |
|
) |
|
elif (not delimiter_has_whitespace) and (not choice_has_whitespace): |
|
eval_logger.debug( |
|
f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace' |
|
) |
|
|
|
def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None: |
|
self.dataset = datasets.load_dataset( |
|
path=self.DATASET_PATH, |
|
name=self.DATASET_NAME, |
|
**dataset_kwargs if dataset_kwargs is not None else {}, |
|
) |
|
|
|
def has_training_docs(self) -> bool: |
|
if self.config.training_split is not None: |
|
return True |
|
else: |
|
return False |
|
|
|
def has_validation_docs(self) -> bool: |
|
if self.config.validation_split is not None: |
|
return True |
|
else: |
|
return False |
|
|
|
def has_test_docs(self) -> bool: |
|
if self.config.test_split is not None: |
|
return True |
|
else: |
|
return False |
|
|
|
def training_docs(self) -> datasets.Dataset: |
|
if self.has_training_docs(): |
|
if self.config.process_docs is not None: |
|
return self.config.process_docs( |
|
self.dataset[self.config.training_split] |
|
) |
|
return self.dataset[self.config.training_split] |
|
|
|
def validation_docs(self) -> datasets.Dataset: |
|
if self.has_validation_docs(): |
|
if self.config.process_docs is not None: |
|
return self.config.process_docs( |
|
self.dataset[self.config.validation_split] |
|
) |
|
return self.dataset[self.config.validation_split] |
|
|
|
def test_docs(self) -> datasets.Dataset: |
|
if self.has_test_docs(): |
|
if self.config.process_docs is not None: |
|
return self.config.process_docs(self.dataset[self.config.test_split]) |
|
return self.dataset[self.config.test_split] |
|
|
|
def fewshot_docs(self): |
|
if self.config.fewshot_split is not None: |
|
if self.config.process_docs is not None: |
|
return self.config.process_docs(self.dataset[self.config.fewshot_split]) |
|
return self.dataset[self.config.fewshot_split] |
|
else: |
|
if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0): |
|
eval_logger.warning( |
|
f"Task '{self.config.task}': " |
|
"num_fewshot > 0 but fewshot_split is None. " |
|
"using preconfigured rule." |
|
) |
|
return super().fewshot_docs() |
|
|
|
@utils.positional_deprecated |
|
def fewshot_context(self, doc: str, num_fewshot: int) -> str: |
|
"""Returns a fewshot context string that is made up of a prepended description |
|
(if provided), the `num_fewshot` number of examples, and an appended prompt example. |
|
|
|
:param doc: str |
|
The document as returned from training_docs, validation_docs, or test_docs. |
|
:param num_fewshot: int |
|
The number of fewshot examples to provide in the returned context string. |
|
:returns: str |
|
The fewshot context. |
|
""" |
|
if description := self.config.description: |
|
description = utils.apply_template(self.config.description, doc) |
|
|
|
if num_fewshot == 0: |
|
|
|
labeled_examples = description |
|
else: |
|
labeled_examples = description + self.sampler.get_context(doc, num_fewshot) |
|
|
|
example = self.doc_to_text(doc) |
|
if self.multiple_input: |
|
return labeled_examples |
|
else: |
|
if isinstance(example, str): |
|
return labeled_examples + example |
|
elif isinstance(example, list): |
|
return [labeled_examples + ex for ex in example] |
|
elif isinstance(example, int): |
|
if self.config.doc_to_choice is not None: |
|
choices = self.doc_to_choice(doc) |
|
return labeled_examples + choices[example] |
|
else: |
|
return labeled_examples + str(example) |
|
|
|
def apply_filters(self): |
|
"""Iterates over FilterEnsembles and applies them to instances""" |
|
if hasattr(self, "_filters"): |
|
for f in self._filters: |
|
f.apply(self._instances) |
|
else: |
|
eval_logger.warning("No filter defined, passing through instances") |
|
return self._instances |
|
|
|
def should_decontaminate(self): |
|
return self.config.should_decontaminate |
|
|
|
def doc_to_decontamination_query(self, doc): |
|
if self.config.should_decontaminate: |
|
if self.config.doc_to_decontamination_query is None: |
|
return self.doc_to_text(doc) |
|
else: |
|
doc_to_decontamination_query = self.config.doc_to_decontamination_query |
|
if doc_to_decontamination_query in self.features: |
|
return doc[doc_to_decontamination_query] |
|
elif callable(doc_to_decontamination_query): |
|
return doc_to_decontamination_query(doc) |
|
else: |
|
return ast.literal_eval( |
|
utils.apply_template( |
|
self.config.doc_to_decontamination_query, doc |
|
) |
|
) |
|
|
|
def _process_doc(self, doc: dict) -> dict: |
|
""" |
|
Override this to process (detokenize, strip, replace, etc.) individual |
|
documents. This can be used in a map over documents of a data split. |
|
E.g. `map(self._process_doc, self.dataset["validation"])` |
|
|
|
:return: dict |
|
The processed version of the specified `doc`. |
|
""" |
|
return doc |
|
|
|
def doc_to_text(self, doc): |
|
if self.prompt is not None: |
|
doc_to_text = self.prompt |
|
else: |
|
doc_to_text = self.config.doc_to_text |
|
|
|
if isinstance(doc_to_text, int): |
|
return doc_to_text |
|
elif isinstance(doc_to_text, str): |
|
if doc_to_text in self.features: |
|
|
|
|
|
|
|
return doc[doc_to_text] |
|
else: |
|
text_string = utils.apply_template(doc_to_text, doc) |
|
if text_string.isdigit() and self._config.doc_to_choice is not None: |
|
return ast.literal_eval(text_string) |
|
else: |
|
return text_string |
|
elif callable(doc_to_text): |
|
return doc_to_text(doc) |
|
|
|
elif hasattr(doc_to_text, "apply"): |
|
applied_prompt = doc_to_text.apply(doc) |
|
if len(applied_prompt) == 2: |
|
return applied_prompt[0] |
|
else: |
|
eval_logger.warning("Applied prompt returns empty string") |
|
return self.config.fewshot_delimiter |
|
else: |
|
print(type(doc_to_text)) |
|
raise TypeError |
|
|
|
def doc_to_target(self, doc: Mapping) -> Union[int, str, list]: |
|
if self.prompt is not None: |
|
doc_to_target = self.prompt |
|
else: |
|
doc_to_target = self.config.doc_to_target |
|
|
|
if isinstance(doc_to_target, int): |
|
return doc_to_target |
|
elif isinstance(doc_to_target, str): |
|
if doc_to_target in self.features: |
|
|
|
|
|
|
|
return doc[doc_to_target] |
|
else: |
|
target_string = utils.apply_template(doc_to_target, doc) |
|
if target_string.isdigit() and self._config.doc_to_choice is not None: |
|
return ast.literal_eval(target_string) |
|
elif ( |
|
len(target_string) >= 2 |
|
and (target_string[0] == "[") |
|
and (target_string[-1] == "]") |
|
): |
|
try: |
|
return ast.literal_eval(target_string) |
|
except (SyntaxError, ValueError): |
|
return target_string |
|
else: |
|
return target_string |
|
elif isinstance(doc_to_target, list): |
|
return doc_to_target |
|
elif callable(doc_to_target): |
|
return doc_to_target(doc) |
|
|
|
elif hasattr(doc_to_target, "apply"): |
|
applied_prompt = doc_to_target.apply(doc) |
|
if len(applied_prompt) == 2: |
|
return applied_prompt[1] |
|
else: |
|
eval_logger.warning("Applied prompt returns empty string") |
|
return self.config.fewshot_delimiter |
|
else: |
|
raise TypeError |
|
|
|
def doc_to_choice(self, doc: Any) -> List[str]: |
|
if self.prompt is not None: |
|
doc_to_choice = self.prompt |
|
elif self.config.doc_to_choice is None: |
|
eval_logger.error("doc_to_choice was called but not set in config") |
|
else: |
|
doc_to_choice = self.config.doc_to_choice |
|
|
|
if isinstance(doc_to_choice, str): |
|
if doc_to_choice in self.features: |
|
return doc[doc_to_choice] |
|
else: |
|
return ast.literal_eval(utils.apply_template(doc_to_choice, doc)) |
|
elif isinstance(doc_to_choice, list): |
|
return doc_to_choice |
|
elif isinstance(doc_to_choice, dict): |
|
return list(doc_to_choice.values()) |
|
elif callable(doc_to_choice): |
|
return doc_to_choice(doc) |
|
elif hasattr(doc_to_choice, "get_answer_choices_list"): |
|
return doc_to_choice.get_answer_choices_list(doc) |
|
else: |
|
raise TypeError |
|
|
|
def construct_requests( |
|
self, doc: dict, ctx: str, **kwargs |
|
) -> Union[List[Instance], Instance]: |
|
if self.OUTPUT_TYPE == "loglikelihood": |
|
arguments = (ctx, self.doc_to_target(doc)) |
|
elif self.OUTPUT_TYPE == "loglikelihood_rolling": |
|
arguments = (self.doc_to_target(doc),) |
|
elif self.OUTPUT_TYPE == "multiple_choice": |
|
choices = self.doc_to_choice(doc) |
|
target_delimiter = self.config.target_delimiter |
|
if self.multiple_input: |
|
|
|
cont = self.doc_to_target(doc) |
|
arguments = [ |
|
(ctx + choice, f"{target_delimiter}{cont}") for choice in choices |
|
] |
|
else: |
|
|
|
arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices] |
|
|
|
request_list = [ |
|
Instance( |
|
request_type="loglikelihood", |
|
doc=doc, |
|
arguments=arg, |
|
idx=i, |
|
**kwargs, |
|
) |
|
for i, arg in enumerate(arguments) |
|
] |
|
|
|
if "acc_mutual_info" in self._metric_fn_list.keys(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
request_list.extend( |
|
[ |
|
Instance( |
|
request_type="loglikelihood", |
|
doc=doc, |
|
arguments=("", "{}".format(choice)), |
|
idx=i, |
|
**kwargs, |
|
) |
|
for i, choice in enumerate(choices) |
|
] |
|
) |
|
return request_list |
|
|
|
elif self.OUTPUT_TYPE == "generate_until": |
|
arguments = (ctx, deepcopy(self.config.generation_kwargs)) |
|
|
|
return Instance( |
|
request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs |
|
) |
|
|
|
def process_results(self, doc, results): |
|
if callable(self.config.process_results): |
|
return self.config.process_results(doc, results) |
|
|
|
result_dict = {} |
|
use_metric = list(self._metric_fn_list.keys()) |
|
if self.OUTPUT_TYPE == "loglikelihood": |
|
results = results[0] |
|
ll, is_greedy = results |
|
return { |
|
**({"perplexity": ll} if "perplexity" in use_metric else {}), |
|
**({"acc": int(is_greedy)} if "acc" in use_metric else {}), |
|
} |
|
elif self.OUTPUT_TYPE == "loglikelihood_rolling": |
|
(loglikelihood,) = results |
|
_words = self.count_words(self.doc_to_target(doc)) |
|
_bytes = self.count_bytes(self.doc_to_target(doc)) |
|
return { |
|
**( |
|
{"word_perplexity": (loglikelihood, _words)} |
|
if "word_perplexity" in use_metric |
|
else {} |
|
), |
|
**( |
|
{"byte_perplexity": (loglikelihood, _bytes)} |
|
if "byte_perplexity" in use_metric |
|
else {} |
|
), |
|
**( |
|
{"bits_per_byte": (loglikelihood, _bytes)} |
|
if "bits_per_byte" in use_metric |
|
else {} |
|
), |
|
} |
|
elif self.OUTPUT_TYPE == "multiple_choice": |
|
lls, is_greedy = zip(*results) |
|
|
|
|
|
choices = self.doc_to_choice(doc) |
|
completion_len = np.array([float(len(i)) for i in choices]) |
|
|
|
if ( |
|
2 * len(choices) == len(lls) |
|
and "acc_mutual_info" in self._metric_fn_list.keys() |
|
): |
|
|
|
|
|
lls_unconditional = lls[1::2] |
|
if len(lls_unconditional) != len(choices): |
|
raise ValueError |
|
|
|
lls = lls[::2] |
|
|
|
pred = np.argmax(lls) |
|
pred_norm = np.argmax(lls / completion_len) |
|
|
|
if self.multiple_input: |
|
gold = self.doc_to_text(doc) |
|
else: |
|
gold = self.doc_to_target(doc) |
|
|
|
gold_index_error = False |
|
if isinstance(gold, list): |
|
gold = [i if i < len(choices) else -100 for i in gold] |
|
if -100 in gold: |
|
gold_index_error = True |
|
else: |
|
if isinstance(gold, int): |
|
gold = gold if gold < len(choices) else -100 |
|
elif isinstance(gold, str): |
|
gold = choices.index(gold) if gold in choices else -100 |
|
|
|
if gold == -100: |
|
gold_index_error = True |
|
|
|
if gold_index_error: |
|
eval_logger.warning( |
|
f"Label index was not in within range of available choices," |
|
f"Sample:\n\n{doc}\n\n" |
|
) |
|
|
|
if self.multiple_target: |
|
acc = 1.0 if pred in gold else 0.0 |
|
acc_norm = 1.0 if pred_norm in gold else 0.0 |
|
exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold])) |
|
else: |
|
acc = 1.0 if pred == gold else 0.0 |
|
acc_norm = 1.0 if pred_norm == gold else 0.0 |
|
|
|
exact_match = int(is_greedy[gold]) if gold != -100 else 0 |
|
|
|
prob_norm = utils.softmax(lls) |
|
|
|
|
|
|
|
result_dict = { |
|
**({"acc": acc} if "acc" in use_metric else {}), |
|
**({"f1": (gold, pred)} if "f1" in use_metric else {}), |
|
**({"mcc": (gold, pred)} if "mcc" in use_metric else {}), |
|
**({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}), |
|
**({"exact_match": exact_match} if "exact_match" in use_metric else {}), |
|
**( |
|
{"brier_score": (gold, prob_norm)} |
|
if "brier_score" in use_metric |
|
else {} |
|
), |
|
} |
|
|
|
if "acc_mutual_info" in use_metric: |
|
lls_mutual_info = [ |
|
ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional) |
|
] |
|
acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0 |
|
result_dict["acc_mutual_info"] = acc_mutual_info |
|
|
|
elif self.OUTPUT_TYPE == "generate_until": |
|
gold = self.doc_to_target(doc) |
|
result = results[0] |
|
if self.config.doc_to_choice is not None: |
|
|
|
|
|
choices = self.doc_to_choice(doc) |
|
gold = choices[gold] |
|
|
|
elif self.multiple_target: |
|
gold = list(gold) |
|
elif type(gold) != type(result): |
|
|
|
gold = type(result)(gold) |
|
|
|
for metric in self._metric_fn_list.keys(): |
|
if self.multiple_target: |
|
|
|
|
|
|
|
scores = [] |
|
if not isinstance(gold, list): |
|
|
|
|
|
gold = [gold] |
|
if metric == "exact_match": |
|
result = [result for _ in range(len(gold))] |
|
scores = self._metric_fn_list[metric]( |
|
references=gold, |
|
predictions=result, |
|
**self._metric_fn_kwargs[metric], |
|
)[metric] |
|
result_score = 1.0 if scores > 0.0 else 0.0 |
|
else: |
|
for gold_option in gold: |
|
try: |
|
result_score = self._metric_fn_list[metric]( |
|
references=[gold_option], |
|
predictions=[result], |
|
**self._metric_fn_kwargs[metric], |
|
) |
|
except ( |
|
TypeError |
|
): |
|
result_score = self._metric_fn_list[metric]( |
|
[gold_option, result] |
|
) |
|
if isinstance(result_score, dict): |
|
|
|
result_score = result_score[metric] |
|
scores.append(result_score) |
|
if any(scores): |
|
result_score = 1.0 |
|
else: |
|
result_score = 0.0 |
|
else: |
|
try: |
|
result_score = self._metric_fn_list[metric]( |
|
references=[gold], |
|
predictions=[result], |
|
**self._metric_fn_kwargs[metric], |
|
) |
|
except TypeError: |
|
result_score = self._metric_fn_list[metric]([gold, result]) |
|
if isinstance(result_score, dict): |
|
|
|
result_score = result_score[metric] |
|
result_dict[metric] = result_score |
|
else: |
|
raise ValueError( |
|
f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ", |
|
"'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'", |
|
) |
|
|
|
return result_dict |
|
|
|
def aggregation(self) -> dict: |
|
return self._aggregation_list |
|
|
|
def higher_is_better(self) -> dict: |
|
return self._higher_is_better |
|
|
|
def get_config(self, key: str) -> Any: |
|
return getattr(self._config, key, None) |
|
|
|
def __repr__(self): |
|
return ( |
|
f"ConfigurableTask(task_name={getattr(self.config, 'task', None)}," |
|
f"group_name={getattr(self.config, 'group', None)}," |
|
f"output_type={self.OUTPUT_TYPE}," |
|
f"num_fewshot={getattr(self.config, 'num_fewshot', None)}," |
|
f"num_samples={len(self.eval_docs)})" |
|
) |
|
|
|
|
|
class MultipleChoiceTask(Task): |
|
OUTPUT_TYPE = "loglikelihood" |
|
|
|
def doc_to_target(self, doc: dict) -> str: |
|
return " " + doc["choices"][doc["gold"]] |
|
|
|
def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]: |
|
|
|
return [ |
|
Instance( |
|
request_type="loglikelihood", |
|
doc=doc, |
|
arguments=(ctx, " {}".format(choice)), |
|
idx=i, |
|
**kwargs, |
|
) |
|
for i, choice in enumerate(doc["choices"]) |
|
] |
|
|
|
def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict: |
|
results = [ |
|
res[0] for res in results |
|
] |
|
gold = doc["gold"] |
|
|
|
acc = 1.0 if np.argmax(results) == gold else 0.0 |
|
completion_len = np.array([float(len(i)) for i in doc["choices"]]) |
|
acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0 |
|
|
|
return { |
|
"acc": acc, |
|
"acc_norm": acc_norm, |
|
} |
|
|
|
def higher_is_better(self) -> dict: |
|
return { |
|
"acc": True, |
|
"acc_norm": True, |
|
} |
|
|
|
def aggregation(self) -> dict: |
|
return { |
|
"acc": mean, |
|
"acc_norm": mean, |
|
} |
|
|
|
|
|
class PerplexityTask(Task): |
|
OUTPUT_TYPE = "loglikelihood_rolling" |
|
|
|
def has_training_docs(self) -> bool: |
|
return False |
|
|
|
def fewshot_examples(self, k: int, rnd) -> List: |
|
if k != 0: |
|
raise ValueError( |
|
"The number of fewshot examples must be 0 for perplexity tasks." |
|
) |
|
return [] |
|
|
|
def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]: |
|
if num_fewshot != 0: |
|
raise ValueError( |
|
"The number of fewshot examples must be 0 for perplexity tasks." |
|
) |
|
|
|
return "" |
|
|
|
def higher_is_better(self) -> dict: |
|
return { |
|
"word_perplexity": False, |
|
"byte_perplexity": False, |
|
"bits_per_byte": False, |
|
} |
|
|
|
def doc_to_decontamination_query(self, doc): |
|
return doc |
|
|
|
def doc_to_text(self, doc) -> str: |
|
return "" |
|
|
|
def doc_to_target(self, doc): |
|
return doc |
|
|
|
def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs): |
|
if bool(ctx): |
|
raise ValueError |
|
|
|
return Instance( |
|
request_type=self.OUTPUT_TYPE, |
|
doc=doc, |
|
arguments=(self.doc_to_target(doc),), |
|
idx=0, |
|
**kwargs, |
|
) |
|
|
|
def process_results(self, doc: dict, results: Tuple[float]) -> dict: |
|
(loglikelihood,) = results |
|
words = self.count_words(self.doc_to_target(doc)) |
|
bytes_ = self.count_bytes(self.doc_to_target(doc)) |
|
return { |
|
"word_perplexity": (loglikelihood, words), |
|
"byte_perplexity": (loglikelihood, bytes_), |
|
"bits_per_byte": (loglikelihood, bytes_), |
|
} |
|
|
|
def aggregation(self) -> dict: |
|
return { |
|
"word_perplexity": weighted_perplexity, |
|
"byte_perplexity": weighted_perplexity, |
|
"bits_per_byte": bits_per_byte, |
|
} |
|
|
|
@classmethod |
|
def count_bytes(cls, doc) -> int: |
|
return len(doc.encode("utf-8")) |
|
|
|
@classmethod |
|
def count_words(cls, doc) -> int: |
|
"""Downstream tasks with custom word boundaries should override this!""" |
|
return len(re.split(r"\s+", doc)) |
|
|