peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/pyarrow
/dataset.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
"""Dataset is currently unstable. APIs subject to change without notice.""" | |
import pyarrow as pa | |
from pyarrow.util import _is_iterable, _stringify_path, _is_path_like | |
try: | |
from pyarrow._dataset import ( # noqa | |
CsvFileFormat, | |
CsvFragmentScanOptions, | |
JsonFileFormat, | |
JsonFragmentScanOptions, | |
Dataset, | |
DatasetFactory, | |
DirectoryPartitioning, | |
FeatherFileFormat, | |
FilenamePartitioning, | |
FileFormat, | |
FileFragment, | |
FileSystemDataset, | |
FileSystemDatasetFactory, | |
FileSystemFactoryOptions, | |
FileWriteOptions, | |
Fragment, | |
FragmentScanOptions, | |
HivePartitioning, | |
IpcFileFormat, | |
IpcFileWriteOptions, | |
InMemoryDataset, | |
Partitioning, | |
PartitioningFactory, | |
Scanner, | |
TaggedRecordBatch, | |
UnionDataset, | |
UnionDatasetFactory, | |
WrittenFile, | |
get_partition_keys, | |
get_partition_keys as _get_partition_keys, # keep for backwards compatibility | |
_filesystemdataset_write, | |
) | |
except ImportError as exc: | |
raise ImportError( | |
f"The pyarrow installation is not built with support for 'dataset' ({str(exc)})" | |
) from None | |
# keep Expression functionality exposed here for backwards compatibility | |
from pyarrow.compute import Expression, scalar, field # noqa | |
_orc_available = False | |
_orc_msg = ( | |
"The pyarrow installation is not built with support for the ORC file " | |
"format." | |
) | |
try: | |
from pyarrow._dataset_orc import OrcFileFormat | |
_orc_available = True | |
except ImportError: | |
pass | |
_parquet_available = False | |
_parquet_msg = ( | |
"The pyarrow installation is not built with support for the Parquet file " | |
"format." | |
) | |
try: | |
from pyarrow._dataset_parquet import ( # noqa | |
ParquetDatasetFactory, | |
ParquetFactoryOptions, | |
ParquetFileFormat, | |
ParquetFileFragment, | |
ParquetFileWriteOptions, | |
ParquetFragmentScanOptions, | |
ParquetReadOptions, | |
RowGroupInfo, | |
) | |
_parquet_available = True | |
except ImportError: | |
pass | |
try: | |
from pyarrow._dataset_parquet_encryption import ( # noqa | |
ParquetDecryptionConfig, | |
ParquetEncryptionConfig, | |
) | |
except ImportError: | |
pass | |
def __getattr__(name): | |
if name == "OrcFileFormat" and not _orc_available: | |
raise ImportError(_orc_msg) | |
if name == "ParquetFileFormat" and not _parquet_available: | |
raise ImportError(_parquet_msg) | |
raise AttributeError( | |
"module 'pyarrow.dataset' has no attribute '{0}'".format(name) | |
) | |
def partitioning(schema=None, field_names=None, flavor=None, | |
dictionaries=None): | |
""" | |
Specify a partitioning scheme. | |
The supported schemes include: | |
- "DirectoryPartitioning": this scheme expects one segment in the file path | |
for each field in the specified schema (all fields are required to be | |
present). For example given schema<year:int16, month:int8> the path | |
"/2009/11" would be parsed to ("year"_ == 2009 and "month"_ == 11). | |
- "HivePartitioning": a scheme for "/$key=$value/" nested directories as | |
found in Apache Hive. This is a multi-level, directory based partitioning | |
scheme. Data is partitioned by static values of a particular column in | |
the schema. Partition keys are represented in the form $key=$value in | |
directory names. Field order is ignored, as are missing or unrecognized | |
field names. | |
For example, given schema<year:int16, month:int8, day:int8>, a possible | |
path would be "/year=2009/month=11/day=15" (but the field order does not | |
need to match). | |
- "FilenamePartitioning": this scheme expects the partitions will have | |
filenames containing the field values separated by "_". | |
For example, given schema<year:int16, month:int8, day:int8>, a possible | |
partition filename "2009_11_part-0.parquet" would be parsed | |
to ("year"_ == 2009 and "month"_ == 11). | |
Parameters | |
---------- | |
schema : pyarrow.Schema, default None | |
The schema that describes the partitions present in the file path. | |
If not specified, and `field_names` and/or `flavor` are specified, | |
the schema will be inferred from the file path (and a | |
PartitioningFactory is returned). | |
field_names : list of str, default None | |
A list of strings (field names). If specified, the schema's types are | |
inferred from the file paths (only valid for DirectoryPartitioning). | |
flavor : str, default None | |
The default is DirectoryPartitioning. Specify ``flavor="hive"`` for | |
a HivePartitioning, and ``flavor="filename"`` for a | |
FilenamePartitioning. | |
dictionaries : dict[str, Array] | |
If the type of any field of `schema` is a dictionary type, the | |
corresponding entry of `dictionaries` must be an array containing | |
every value which may be taken by the corresponding column or an | |
error will be raised in parsing. Alternatively, pass `infer` to have | |
Arrow discover the dictionary values, in which case a | |
PartitioningFactory is returned. | |
Returns | |
------- | |
Partitioning or PartitioningFactory | |
The partitioning scheme | |
Examples | |
-------- | |
Specify the Schema for paths like "/2009/June": | |
>>> import pyarrow as pa | |
>>> import pyarrow.dataset as ds | |
>>> part = ds.partitioning(pa.schema([("year", pa.int16()), | |
... ("month", pa.string())])) | |
or let the types be inferred by only specifying the field names: | |
>>> part = ds.partitioning(field_names=["year", "month"]) | |
For paths like "/2009/June", the year will be inferred as int32 while month | |
will be inferred as string. | |
Specify a Schema with dictionary encoding, providing dictionary values: | |
>>> part = ds.partitioning( | |
... pa.schema([ | |
... ("year", pa.int16()), | |
... ("month", pa.dictionary(pa.int8(), pa.string())) | |
... ]), | |
... dictionaries={ | |
... "month": pa.array(["January", "February", "March"]), | |
... }) | |
Alternatively, specify a Schema with dictionary encoding, but have Arrow | |
infer the dictionary values: | |
>>> part = ds.partitioning( | |
... pa.schema([ | |
... ("year", pa.int16()), | |
... ("month", pa.dictionary(pa.int8(), pa.string())) | |
... ]), | |
... dictionaries="infer") | |
Create a Hive scheme for a path like "/year=2009/month=11": | |
>>> part = ds.partitioning( | |
... pa.schema([("year", pa.int16()), ("month", pa.int8())]), | |
... flavor="hive") | |
A Hive scheme can also be discovered from the directory structure (and | |
types will be inferred): | |
>>> part = ds.partitioning(flavor="hive") | |
""" | |
if flavor is None: | |
# default flavor | |
if schema is not None: | |
if field_names is not None: | |
raise ValueError( | |
"Cannot specify both 'schema' and 'field_names'") | |
if dictionaries == 'infer': | |
return DirectoryPartitioning.discover(schema=schema) | |
return DirectoryPartitioning(schema, dictionaries) | |
elif field_names is not None: | |
if isinstance(field_names, list): | |
return DirectoryPartitioning.discover(field_names) | |
else: | |
raise ValueError( | |
"Expected list of field names, got {}".format( | |
type(field_names))) | |
else: | |
raise ValueError( | |
"For the default directory flavor, need to specify " | |
"a Schema or a list of field names") | |
if flavor == "filename": | |
if schema is not None: | |
if field_names is not None: | |
raise ValueError( | |
"Cannot specify both 'schema' and 'field_names'") | |
if dictionaries == 'infer': | |
return FilenamePartitioning.discover(schema=schema) | |
return FilenamePartitioning(schema, dictionaries) | |
elif field_names is not None: | |
if isinstance(field_names, list): | |
return FilenamePartitioning.discover(field_names) | |
else: | |
raise ValueError( | |
"Expected list of field names, got {}".format( | |
type(field_names))) | |
else: | |
raise ValueError( | |
"For the filename flavor, need to specify " | |
"a Schema or a list of field names") | |
elif flavor == 'hive': | |
if field_names is not None: | |
raise ValueError("Cannot specify 'field_names' for flavor 'hive'") | |
elif schema is not None: | |
if isinstance(schema, pa.Schema): | |
if dictionaries == 'infer': | |
return HivePartitioning.discover(schema=schema) | |
return HivePartitioning(schema, dictionaries) | |
else: | |
raise ValueError( | |
"Expected Schema for 'schema', got {}".format( | |
type(schema))) | |
else: | |
return HivePartitioning.discover() | |
else: | |
raise ValueError("Unsupported flavor") | |
def _ensure_partitioning(scheme): | |
""" | |
Validate input and return a Partitioning(Factory). | |
It passes None through if no partitioning scheme is defined. | |
""" | |
if scheme is None: | |
pass | |
elif isinstance(scheme, str): | |
scheme = partitioning(flavor=scheme) | |
elif isinstance(scheme, list): | |
scheme = partitioning(field_names=scheme) | |
elif isinstance(scheme, (Partitioning, PartitioningFactory)): | |
pass | |
else: | |
raise ValueError("Expected Partitioning or PartitioningFactory, got {}" | |
.format(type(scheme))) | |
return scheme | |
def _ensure_format(obj): | |
if isinstance(obj, FileFormat): | |
return obj | |
elif obj == "parquet": | |
if not _parquet_available: | |
raise ValueError(_parquet_msg) | |
return ParquetFileFormat() | |
elif obj in {"ipc", "arrow"}: | |
return IpcFileFormat() | |
elif obj == "feather": | |
return FeatherFileFormat() | |
elif obj == "csv": | |
return CsvFileFormat() | |
elif obj == "orc": | |
if not _orc_available: | |
raise ValueError(_orc_msg) | |
return OrcFileFormat() | |
elif obj == "json": | |
return JsonFileFormat() | |
else: | |
raise ValueError("format '{}' is not supported".format(obj)) | |
def _ensure_multiple_sources(paths, filesystem=None): | |
""" | |
Treat a list of paths as files belonging to a single file system | |
If the file system is local then also validates that all paths | |
are referencing existing *files* otherwise any non-file paths will be | |
silently skipped (for example on a remote filesystem). | |
Parameters | |
---------- | |
paths : list of path-like | |
Note that URIs are not allowed. | |
filesystem : FileSystem or str, optional | |
If an URI is passed, then its path component will act as a prefix for | |
the file paths. | |
Returns | |
------- | |
(FileSystem, list of str) | |
File system object and a list of normalized paths. | |
Raises | |
------ | |
TypeError | |
If the passed filesystem has wrong type. | |
IOError | |
If the file system is local and a referenced path is not available or | |
not a file. | |
""" | |
from pyarrow.fs import ( | |
LocalFileSystem, SubTreeFileSystem, _MockFileSystem, FileType, | |
_ensure_filesystem | |
) | |
if filesystem is None: | |
# fall back to local file system as the default | |
filesystem = LocalFileSystem() | |
else: | |
# construct a filesystem if it is a valid URI | |
filesystem = _ensure_filesystem(filesystem) | |
is_local = ( | |
isinstance(filesystem, (LocalFileSystem, _MockFileSystem)) or | |
(isinstance(filesystem, SubTreeFileSystem) and | |
isinstance(filesystem.base_fs, LocalFileSystem)) | |
) | |
# allow normalizing irregular paths such as Windows local paths | |
paths = [filesystem.normalize_path(_stringify_path(p)) for p in paths] | |
# validate that all of the paths are pointing to existing *files* | |
# possible improvement is to group the file_infos by type and raise for | |
# multiple paths per error category | |
if is_local: | |
for info in filesystem.get_file_info(paths): | |
file_type = info.type | |
if file_type == FileType.File: | |
continue | |
elif file_type == FileType.NotFound: | |
raise FileNotFoundError(info.path) | |
elif file_type == FileType.Directory: | |
raise IsADirectoryError( | |
'Path {} points to a directory, but only file paths are ' | |
'supported. To construct a nested or union dataset pass ' | |
'a list of dataset objects instead.'.format(info.path) | |
) | |
else: | |
raise IOError( | |
'Path {} exists but its type is unknown (could be a ' | |
'special file such as a Unix socket or character device, ' | |
'or Windows NUL / CON / ...)'.format(info.path) | |
) | |
return filesystem, paths | |
def _ensure_single_source(path, filesystem=None): | |
""" | |
Treat path as either a recursively traversable directory or a single file. | |
Parameters | |
---------- | |
path : path-like | |
filesystem : FileSystem or str, optional | |
If an URI is passed, then its path component will act as a prefix for | |
the file paths. | |
Returns | |
------- | |
(FileSystem, list of str or fs.Selector) | |
File system object and either a single item list pointing to a file or | |
an fs.Selector object pointing to a directory. | |
Raises | |
------ | |
TypeError | |
If the passed filesystem has wrong type. | |
FileNotFoundError | |
If the referenced file or directory doesn't exist. | |
""" | |
from pyarrow.fs import FileType, FileSelector, _resolve_filesystem_and_path | |
# at this point we already checked that `path` is a path-like | |
filesystem, path = _resolve_filesystem_and_path(path, filesystem) | |
# ensure that the path is normalized before passing to dataset discovery | |
path = filesystem.normalize_path(path) | |
# retrieve the file descriptor | |
file_info = filesystem.get_file_info(path) | |
# depending on the path type either return with a recursive | |
# directory selector or as a list containing a single file | |
if file_info.type == FileType.Directory: | |
paths_or_selector = FileSelector(path, recursive=True) | |
elif file_info.type == FileType.File: | |
paths_or_selector = [path] | |
else: | |
raise FileNotFoundError(path) | |
return filesystem, paths_or_selector | |
def _filesystem_dataset(source, schema=None, filesystem=None, | |
partitioning=None, format=None, | |
partition_base_dir=None, exclude_invalid_files=None, | |
selector_ignore_prefixes=None): | |
""" | |
Create a FileSystemDataset which can be used to build a Dataset. | |
Parameters are documented in the dataset function. | |
Returns | |
------- | |
FileSystemDataset | |
""" | |
from pyarrow.fs import LocalFileSystem, _ensure_filesystem, FileInfo | |
format = _ensure_format(format or 'parquet') | |
partitioning = _ensure_partitioning(partitioning) | |
if isinstance(source, (list, tuple)): | |
if source and isinstance(source[0], FileInfo): | |
if filesystem is None: | |
# fall back to local file system as the default | |
fs = LocalFileSystem() | |
else: | |
# construct a filesystem if it is a valid URI | |
fs = _ensure_filesystem(filesystem) | |
paths_or_selector = source | |
else: | |
fs, paths_or_selector = _ensure_multiple_sources(source, filesystem) | |
else: | |
fs, paths_or_selector = _ensure_single_source(source, filesystem) | |
options = FileSystemFactoryOptions( | |
partitioning=partitioning, | |
partition_base_dir=partition_base_dir, | |
exclude_invalid_files=exclude_invalid_files, | |
selector_ignore_prefixes=selector_ignore_prefixes | |
) | |
factory = FileSystemDatasetFactory(fs, paths_or_selector, format, options) | |
return factory.finish(schema) | |
def _in_memory_dataset(source, schema=None, **kwargs): | |
if any(v is not None for v in kwargs.values()): | |
raise ValueError( | |
"For in-memory datasets, you cannot pass any additional arguments") | |
return InMemoryDataset(source, schema) | |
def _union_dataset(children, schema=None, **kwargs): | |
if any(v is not None for v in kwargs.values()): | |
raise ValueError( | |
"When passing a list of Datasets, you cannot pass any additional " | |
"arguments" | |
) | |
if schema is None: | |
# unify the children datasets' schemas | |
schema = pa.unify_schemas([child.schema for child in children]) | |
for child in children: | |
if getattr(child, "_scan_options", None): | |
raise ValueError( | |
"Creating an UnionDataset from filtered or projected Datasets " | |
"is currently not supported. Union the unfiltered datasets " | |
"and apply the filter to the resulting union." | |
) | |
# create datasets with the requested schema | |
children = [child.replace_schema(schema) for child in children] | |
return UnionDataset(schema, children) | |
def parquet_dataset(metadata_path, schema=None, filesystem=None, format=None, | |
partitioning=None, partition_base_dir=None): | |
""" | |
Create a FileSystemDataset from a `_metadata` file created via | |
`pyarrow.parquet.write_metadata`. | |
Parameters | |
---------- | |
metadata_path : path, | |
Path pointing to a single file parquet metadata file | |
schema : Schema, optional | |
Optionally provide the Schema for the Dataset, in which case it will | |
not be inferred from the source. | |
filesystem : FileSystem or URI string, default None | |
If a single path is given as source and filesystem is None, then the | |
filesystem will be inferred from the path. | |
If an URI string is passed, then a filesystem object is constructed | |
using the URI's optional path component as a directory prefix. See the | |
examples below. | |
Note that the URIs on Windows must follow 'file:///C:...' or | |
'file:/C:...' patterns. | |
format : ParquetFileFormat | |
An instance of a ParquetFileFormat if special options needs to be | |
passed. | |
partitioning : Partitioning, PartitioningFactory, str, list of str | |
The partitioning scheme specified with the ``partitioning()`` | |
function. A flavor string can be used as shortcut, and with a list of | |
field names a DirectoryPartitioning will be inferred. | |
partition_base_dir : str, optional | |
For the purposes of applying the partitioning, paths will be | |
stripped of the partition_base_dir. Files not matching the | |
partition_base_dir prefix will be skipped for partitioning discovery. | |
The ignored files will still be part of the Dataset, but will not | |
have partition information. | |
Returns | |
------- | |
FileSystemDataset | |
The dataset corresponding to the given metadata | |
""" | |
from pyarrow.fs import LocalFileSystem, _ensure_filesystem | |
if format is None: | |
format = ParquetFileFormat() | |
elif not isinstance(format, ParquetFileFormat): | |
raise ValueError("format argument must be a ParquetFileFormat") | |
if filesystem is None: | |
filesystem = LocalFileSystem() | |
else: | |
filesystem = _ensure_filesystem(filesystem) | |
metadata_path = filesystem.normalize_path(_stringify_path(metadata_path)) | |
options = ParquetFactoryOptions( | |
partition_base_dir=partition_base_dir, | |
partitioning=_ensure_partitioning(partitioning) | |
) | |
factory = ParquetDatasetFactory( | |
metadata_path, filesystem, format, options=options) | |
return factory.finish(schema) | |
def dataset(source, schema=None, format=None, filesystem=None, | |
partitioning=None, partition_base_dir=None, | |
exclude_invalid_files=None, ignore_prefixes=None): | |
""" | |
Open a dataset. | |
Datasets provides functionality to efficiently work with tabular, | |
potentially larger than memory and multi-file dataset. | |
- A unified interface for different sources, like Parquet and Feather | |
- Discovery of sources (crawling directories, handle directory-based | |
partitioned datasets, basic schema normalization) | |
- Optimized reading with predicate pushdown (filtering rows), projection | |
(selecting columns), parallel reading or fine-grained managing of tasks. | |
Note that this is the high-level API, to have more control over the dataset | |
construction use the low-level API classes (FileSystemDataset, | |
FilesystemDatasetFactory, etc.) | |
Parameters | |
---------- | |
source : path, list of paths, dataset, list of datasets, (list of) \ | |
RecordBatch or Table, iterable of RecordBatch, RecordBatchReader, or URI | |
Path pointing to a single file: | |
Open a FileSystemDataset from a single file. | |
Path pointing to a directory: | |
The directory gets discovered recursively according to a | |
partitioning scheme if given. | |
List of file paths: | |
Create a FileSystemDataset from explicitly given files. The files | |
must be located on the same filesystem given by the filesystem | |
parameter. | |
Note that in contrary of construction from a single file, passing | |
URIs as paths is not allowed. | |
List of datasets: | |
A nested UnionDataset gets constructed, it allows arbitrary | |
composition of other datasets. | |
Note that additional keyword arguments are not allowed. | |
(List of) batches or tables, iterable of batches, or RecordBatchReader: | |
Create an InMemoryDataset. If an iterable or empty list is given, | |
a schema must also be given. If an iterable or RecordBatchReader | |
is given, the resulting dataset can only be scanned once; further | |
attempts will raise an error. | |
schema : Schema, optional | |
Optionally provide the Schema for the Dataset, in which case it will | |
not be inferred from the source. | |
format : FileFormat or str | |
Currently "parquet", "ipc"/"arrow"/"feather", "csv", "json", and "orc" are | |
supported. For Feather, only version 2 files are supported. | |
filesystem : FileSystem or URI string, default None | |
If a single path is given as source and filesystem is None, then the | |
filesystem will be inferred from the path. | |
If an URI string is passed, then a filesystem object is constructed | |
using the URI's optional path component as a directory prefix. See the | |
examples below. | |
Note that the URIs on Windows must follow 'file:///C:...' or | |
'file:/C:...' patterns. | |
partitioning : Partitioning, PartitioningFactory, str, list of str | |
The partitioning scheme specified with the ``partitioning()`` | |
function. A flavor string can be used as shortcut, and with a list of | |
field names a DirectoryPartitioning will be inferred. | |
partition_base_dir : str, optional | |
For the purposes of applying the partitioning, paths will be | |
stripped of the partition_base_dir. Files not matching the | |
partition_base_dir prefix will be skipped for partitioning discovery. | |
The ignored files will still be part of the Dataset, but will not | |
have partition information. | |
exclude_invalid_files : bool, optional (default True) | |
If True, invalid files will be excluded (file format specific check). | |
This will incur IO for each files in a serial and single threaded | |
fashion. Disabling this feature will skip the IO, but unsupported | |
files may be present in the Dataset (resulting in an error at scan | |
time). | |
ignore_prefixes : list, optional | |
Files matching any of these prefixes will be ignored by the | |
discovery process. This is matched to the basename of a path. | |
By default this is ['.', '_']. | |
Note that discovery happens only if a directory is passed as source. | |
Returns | |
------- | |
dataset : Dataset | |
Either a FileSystemDataset or a UnionDataset depending on the source | |
parameter. | |
Examples | |
-------- | |
Creating an example Table: | |
>>> import pyarrow as pa | |
>>> import pyarrow.parquet as pq | |
>>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021], | |
... 'n_legs': [2, 2, 4, 4, 5, 100], | |
... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", | |
... "Brittle stars", "Centipede"]}) | |
>>> pq.write_table(table, "file.parquet") | |
Opening a single file: | |
>>> import pyarrow.dataset as ds | |
>>> dataset = ds.dataset("file.parquet", format="parquet") | |
>>> dataset.to_table() | |
pyarrow.Table | |
year: int64 | |
n_legs: int64 | |
animal: string | |
---- | |
year: [[2020,2022,2021,2022,2019,2021]] | |
n_legs: [[2,2,4,4,5,100]] | |
animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]] | |
Opening a single file with an explicit schema: | |
>>> myschema = pa.schema([ | |
... ('n_legs', pa.int64()), | |
... ('animal', pa.string())]) | |
>>> dataset = ds.dataset("file.parquet", schema=myschema, format="parquet") | |
>>> dataset.to_table() | |
pyarrow.Table | |
n_legs: int64 | |
animal: string | |
---- | |
n_legs: [[2,2,4,4,5,100]] | |
animal: [["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]] | |
Opening a dataset for a single directory: | |
>>> ds.write_dataset(table, "partitioned_dataset", format="parquet", | |
... partitioning=['year']) | |
>>> dataset = ds.dataset("partitioned_dataset", format="parquet") | |
>>> dataset.to_table() | |
pyarrow.Table | |
n_legs: int64 | |
animal: string | |
---- | |
n_legs: [[5],[2],[4,100],[2,4]] | |
animal: [["Brittle stars"],["Flamingo"],...["Parrot","Horse"]] | |
For a single directory from a S3 bucket: | |
>>> ds.dataset("s3://mybucket/nyc-taxi/", | |
... format="parquet") # doctest: +SKIP | |
Opening a dataset from a list of relatives local paths: | |
>>> dataset = ds.dataset([ | |
... "partitioned_dataset/2019/part-0.parquet", | |
... "partitioned_dataset/2020/part-0.parquet", | |
... "partitioned_dataset/2021/part-0.parquet", | |
... ], format='parquet') | |
>>> dataset.to_table() | |
pyarrow.Table | |
n_legs: int64 | |
animal: string | |
---- | |
n_legs: [[5],[2],[4,100]] | |
animal: [["Brittle stars"],["Flamingo"],["Dog","Centipede"]] | |
With filesystem provided: | |
>>> paths = [ | |
... 'part0/data.parquet', | |
... 'part1/data.parquet', | |
... 'part3/data.parquet', | |
... ] | |
>>> ds.dataset(paths, filesystem='file:///directory/prefix, | |
... format='parquet') # doctest: +SKIP | |
Which is equivalent with: | |
>>> fs = SubTreeFileSystem("/directory/prefix", | |
... LocalFileSystem()) # doctest: +SKIP | |
>>> ds.dataset(paths, filesystem=fs, format='parquet') # doctest: +SKIP | |
With a remote filesystem URI: | |
>>> paths = [ | |
... 'nested/directory/part0/data.parquet', | |
... 'nested/directory/part1/data.parquet', | |
... 'nested/directory/part3/data.parquet', | |
... ] | |
>>> ds.dataset(paths, filesystem='s3://bucket/', | |
... format='parquet') # doctest: +SKIP | |
Similarly to the local example, the directory prefix may be included in the | |
filesystem URI: | |
>>> ds.dataset(paths, filesystem='s3://bucket/nested/directory', | |
... format='parquet') # doctest: +SKIP | |
Construction of a nested dataset: | |
>>> ds.dataset([ | |
... dataset("s3://old-taxi-data", format="parquet"), | |
... dataset("local/path/to/data", format="ipc") | |
... ]) # doctest: +SKIP | |
""" | |
from pyarrow.fs import FileInfo | |
# collect the keyword arguments for later reuse | |
kwargs = dict( | |
schema=schema, | |
filesystem=filesystem, | |
partitioning=partitioning, | |
format=format, | |
partition_base_dir=partition_base_dir, | |
exclude_invalid_files=exclude_invalid_files, | |
selector_ignore_prefixes=ignore_prefixes | |
) | |
if _is_path_like(source): | |
return _filesystem_dataset(source, **kwargs) | |
elif isinstance(source, (tuple, list)): | |
if all(_is_path_like(elem) or isinstance(elem, FileInfo) for elem in source): | |
return _filesystem_dataset(source, **kwargs) | |
elif all(isinstance(elem, Dataset) for elem in source): | |
return _union_dataset(source, **kwargs) | |
elif all(isinstance(elem, (pa.RecordBatch, pa.Table)) | |
for elem in source): | |
return _in_memory_dataset(source, **kwargs) | |
else: | |
unique_types = set(type(elem).__name__ for elem in source) | |
type_names = ', '.join('{}'.format(t) for t in unique_types) | |
raise TypeError( | |
'Expected a list of path-like or dataset objects, or a list ' | |
'of batches or tables. The given list contains the following ' | |
'types: {}'.format(type_names) | |
) | |
elif isinstance(source, (pa.RecordBatch, pa.Table)): | |
return _in_memory_dataset(source, **kwargs) | |
else: | |
raise TypeError( | |
'Expected a path-like, list of path-likes or a list of Datasets ' | |
'instead of the given type: {}'.format(type(source).__name__) | |
) | |
def _ensure_write_partitioning(part, schema, flavor): | |
if isinstance(part, PartitioningFactory): | |
raise ValueError("A PartitioningFactory cannot be used. " | |
"Did you call the partitioning function " | |
"without supplying a schema?") | |
if isinstance(part, Partitioning) and flavor: | |
raise ValueError( | |
"Providing a partitioning_flavor with " | |
"a Partitioning object is not supported" | |
) | |
elif isinstance(part, (tuple, list)): | |
# Name of fields were provided instead of a partitioning object. | |
# Create a partitioning factory with those field names. | |
part = partitioning( | |
schema=pa.schema([schema.field(f) for f in part]), | |
flavor=flavor | |
) | |
elif part is None: | |
part = partitioning(pa.schema([]), flavor=flavor) | |
if not isinstance(part, Partitioning): | |
raise ValueError( | |
"partitioning must be a Partitioning object or " | |
"a list of column names" | |
) | |
return part | |
def write_dataset(data, base_dir, *, basename_template=None, format=None, | |
partitioning=None, partitioning_flavor=None, schema=None, | |
filesystem=None, file_options=None, use_threads=True, | |
max_partitions=None, max_open_files=None, | |
max_rows_per_file=None, min_rows_per_group=None, | |
max_rows_per_group=None, file_visitor=None, | |
existing_data_behavior='error', create_dir=True): | |
""" | |
Write a dataset to a given format and partitioning. | |
Parameters | |
---------- | |
data : Dataset, Table/RecordBatch, RecordBatchReader, list of \ | |
Table/RecordBatch, or iterable of RecordBatch | |
The data to write. This can be a Dataset instance or | |
in-memory Arrow data. If an iterable is given, the schema must | |
also be given. | |
base_dir : str | |
The root directory where to write the dataset. | |
basename_template : str, optional | |
A template string used to generate basenames of written data files. | |
The token '{i}' will be replaced with an automatically incremented | |
integer. If not specified, it defaults to | |
"part-{i}." + format.default_extname | |
format : FileFormat or str | |
The format in which to write the dataset. Currently supported: | |
"parquet", "ipc"/"arrow"/"feather", and "csv". If a FileSystemDataset | |
is being written and `format` is not specified, it defaults to the | |
same format as the specified FileSystemDataset. When writing a | |
Table or RecordBatch, this keyword is required. | |
partitioning : Partitioning or list[str], optional | |
The partitioning scheme specified with the ``partitioning()`` | |
function or a list of field names. When providing a list of | |
field names, you can use ``partitioning_flavor`` to drive which | |
partitioning type should be used. | |
partitioning_flavor : str, optional | |
One of the partitioning flavors supported by | |
``pyarrow.dataset.partitioning``. If omitted will use the | |
default of ``partitioning()`` which is directory partitioning. | |
schema : Schema, optional | |
filesystem : FileSystem, optional | |
file_options : pyarrow.dataset.FileWriteOptions, optional | |
FileFormat specific write options, created using the | |
``FileFormat.make_write_options()`` function. | |
use_threads : bool, default True | |
Write files in parallel. If enabled, then maximum parallelism will be | |
used determined by the number of available CPU cores. | |
max_partitions : int, default 1024 | |
Maximum number of partitions any batch may be written into. | |
max_open_files : int, default 1024 | |
If greater than 0 then this will limit the maximum number of | |
files that can be left open. If an attempt is made to open | |
too many files then the least recently used file will be closed. | |
If this setting is set too low you may end up fragmenting your | |
data into many small files. | |
max_rows_per_file : int, default 0 | |
Maximum number of rows per file. If greater than 0 then this will | |
limit how many rows are placed in any single file. Otherwise there | |
will be no limit and one file will be created in each output | |
directory unless files need to be closed to respect max_open_files | |
min_rows_per_group : int, default 0 | |
Minimum number of rows per group. When the value is greater than 0, | |
the dataset writer will batch incoming data and only write the row | |
groups to the disk when sufficient rows have accumulated. | |
max_rows_per_group : int, default 1024 * 1024 | |
Maximum number of rows per group. If the value is greater than 0, | |
then the dataset writer may split up large incoming batches into | |
multiple row groups. If this value is set, then min_rows_per_group | |
should also be set. Otherwise it could end up with very small row | |
groups. | |
file_visitor : function | |
If set, this function will be called with a WrittenFile instance | |
for each file created during the call. This object will have both | |
a path attribute and a metadata attribute. | |
The path attribute will be a string containing the path to | |
the created file. | |
The metadata attribute will be the parquet metadata of the file. | |
This metadata will have the file path attribute set and can be used | |
to build a _metadata file. The metadata attribute will be None if | |
the format is not parquet. | |
Example visitor which simple collects the filenames created:: | |
visited_paths = [] | |
def file_visitor(written_file): | |
visited_paths.append(written_file.path) | |
existing_data_behavior : 'error' | 'overwrite_or_ignore' | \ | |
'delete_matching' | |
Controls how the dataset will handle data that already exists in | |
the destination. The default behavior ('error') is to raise an error | |
if any data exists in the destination. | |
'overwrite_or_ignore' will ignore any existing data and will | |
overwrite files with the same name as an output file. Other | |
existing files will be ignored. This behavior, in combination | |
with a unique basename_template for each write, will allow for | |
an append workflow. | |
'delete_matching' is useful when you are writing a partitioned | |
dataset. The first time each partition directory is encountered | |
the entire directory will be deleted. This allows you to overwrite | |
old partitions completely. | |
create_dir : bool, default True | |
If False, directories will not be created. This can be useful for | |
filesystems that do not require directories. | |
""" | |
from pyarrow.fs import _resolve_filesystem_and_path | |
if isinstance(data, (list, tuple)): | |
schema = schema or data[0].schema | |
data = InMemoryDataset(data, schema=schema) | |
elif isinstance(data, (pa.RecordBatch, pa.Table)): | |
schema = schema or data.schema | |
data = InMemoryDataset(data, schema=schema) | |
elif isinstance(data, pa.ipc.RecordBatchReader) or _is_iterable(data): | |
data = Scanner.from_batches(data, schema=schema) | |
schema = None | |
elif not isinstance(data, (Dataset, Scanner)): | |
raise ValueError( | |
"Only Dataset, Scanner, Table/RecordBatch, RecordBatchReader, " | |
"a list of Tables/RecordBatches, or iterable of batches are " | |
"supported." | |
) | |
if format is None and isinstance(data, FileSystemDataset): | |
format = data.format | |
else: | |
format = _ensure_format(format) | |
if file_options is None: | |
file_options = format.make_write_options() | |
if format != file_options.format: | |
raise TypeError("Supplied FileWriteOptions have format {}, " | |
"which doesn't match supplied FileFormat {}".format( | |
format, file_options)) | |
if basename_template is None: | |
basename_template = "part-{i}." + format.default_extname | |
if max_partitions is None: | |
max_partitions = 1024 | |
if max_open_files is None: | |
max_open_files = 1024 | |
if max_rows_per_file is None: | |
max_rows_per_file = 0 | |
if max_rows_per_group is None: | |
max_rows_per_group = 1 << 20 | |
if min_rows_per_group is None: | |
min_rows_per_group = 0 | |
# at this point data is a Scanner or a Dataset, anything else | |
# was converted to one of those two. So we can grab the schema | |
# to build the partitioning object from Dataset. | |
if isinstance(data, Scanner): | |
partitioning_schema = data.projected_schema | |
else: | |
partitioning_schema = data.schema | |
partitioning = _ensure_write_partitioning(partitioning, | |
schema=partitioning_schema, | |
flavor=partitioning_flavor) | |
filesystem, base_dir = _resolve_filesystem_and_path(base_dir, filesystem) | |
if isinstance(data, Dataset): | |
scanner = data.scanner(use_threads=use_threads) | |
else: | |
# scanner was passed directly by the user, in which case a schema | |
# cannot be passed | |
if schema is not None: | |
raise ValueError("Cannot specify a schema when writing a Scanner") | |
scanner = data | |
_filesystemdataset_write( | |
scanner, base_dir, basename_template, filesystem, partitioning, | |
file_options, max_partitions, file_visitor, existing_data_behavior, | |
max_open_files, max_rows_per_file, | |
min_rows_per_group, max_rows_per_group, create_dir | |
) | |