peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/transformers
/processing_utils.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processing saving/loading class for common processors. | |
""" | |
import copy | |
import inspect | |
import json | |
import os | |
import warnings | |
from pathlib import Path | |
from typing import Any, Dict, Optional, Tuple, Union | |
from .dynamic_module_utils import custom_object_save | |
from .tokenization_utils_base import PreTrainedTokenizerBase | |
from .utils import ( | |
PROCESSOR_NAME, | |
PushToHubMixin, | |
add_model_info_to_auto_map, | |
cached_file, | |
copy_func, | |
direct_transformers_import, | |
download_url, | |
is_offline_mode, | |
is_remote_url, | |
logging, | |
) | |
logger = logging.get_logger(__name__) | |
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names. | |
transformers_module = direct_transformers_import(Path(__file__).parent) | |
AUTO_TO_BASE_CLASS_MAPPING = { | |
"AutoTokenizer": "PreTrainedTokenizerBase", | |
"AutoFeatureExtractor": "FeatureExtractionMixin", | |
"AutoImageProcessor": "ImageProcessingMixin", | |
} | |
class ProcessorMixin(PushToHubMixin): | |
""" | |
This is a mixin used to provide saving/loading functionality for all processor classes. | |
""" | |
attributes = ["feature_extractor", "tokenizer"] | |
# Names need to be attr_class for attr in attributes | |
feature_extractor_class = None | |
tokenizer_class = None | |
_auto_class = None | |
# args have to match the attributes class attribute | |
def __init__(self, *args, **kwargs): | |
# Sanitize args and kwargs | |
for key in kwargs: | |
if key not in self.attributes: | |
raise TypeError(f"Unexpected keyword argument {key}.") | |
for arg, attribute_name in zip(args, self.attributes): | |
if attribute_name in kwargs: | |
raise TypeError(f"Got multiple values for argument {attribute_name}.") | |
else: | |
kwargs[attribute_name] = arg | |
if len(kwargs) != len(self.attributes): | |
raise ValueError( | |
f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got " | |
f"{len(args)} arguments instead." | |
) | |
# Check each arg is of the proper class (this will also catch a user initializing in the wrong order) | |
for attribute_name, arg in kwargs.items(): | |
class_name = getattr(self, f"{attribute_name}_class") | |
# Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class. | |
class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name) | |
if isinstance(class_name, tuple): | |
proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None) | |
else: | |
proper_class = getattr(transformers_module, class_name) | |
if not isinstance(arg, proper_class): | |
raise ValueError( | |
f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected." | |
) | |
setattr(self, attribute_name, arg) | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
# Get the kwargs in `__init__`. | |
sig = inspect.signature(self.__init__) | |
# Only save the attributes that are presented in the kwargs of `__init__`. | |
attrs_to_save = sig.parameters | |
# Don't save attributes like `tokenizer`, `image processor` etc. | |
attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes] | |
# extra attributes to be kept | |
attrs_to_save += ["auto_map"] | |
output = {k: v for k, v in output.items() if k in attrs_to_save} | |
output["processor_class"] = self.__class__.__name__ | |
if "tokenizer" in output: | |
del output["tokenizer"] | |
if "image_processor" in output: | |
del output["image_processor"] | |
if "feature_extractor" in output: | |
del output["feature_extractor"] | |
# Some attributes have different names but containing objects that are not simple strings | |
output = { | |
k: v | |
for k, v in output.items() | |
if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC") | |
} | |
return output | |
def to_json_string(self) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Returns: | |
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. | |
""" | |
dictionary = self.to_dict() | |
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (`str` or `os.PathLike`): | |
Path to the JSON file in which this processor instance's parameters will be saved. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string()) | |
def __repr__(self): | |
attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes] | |
attributes_repr = "\n".join(attributes_repr) | |
return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}" | |
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs): | |
""" | |
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it | |
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method. | |
<Tip> | |
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and | |
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the | |
methods above for more information. | |
</Tip> | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will | |
be created if it does not exist). | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
FutureWarning, | |
) | |
if kwargs.get("token", None) is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
kwargs["token"] = use_auth_token | |
os.makedirs(save_directory, exist_ok=True) | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
repo_id = self._create_repo(repo_id, **kwargs) | |
files_timestamps = self._get_files_timestamps(save_directory) | |
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be | |
# loaded from the Hub. | |
if self._auto_class is not None: | |
attrs = [getattr(self, attribute_name) for attribute_name in self.attributes] | |
configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs] | |
configs.append(self) | |
custom_object_save(self, save_directory, config=configs) | |
for attribute_name in self.attributes: | |
attribute = getattr(self, attribute_name) | |
# Include the processor class in the attribute config so this processor can then be reloaded with the | |
# `AutoProcessor` API. | |
if hasattr(attribute, "_set_processor_class"): | |
attribute._set_processor_class(self.__class__.__name__) | |
attribute.save_pretrained(save_directory) | |
if self._auto_class is not None: | |
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up. | |
for attribute_name in self.attributes: | |
attribute = getattr(self, attribute_name) | |
if isinstance(attribute, PreTrainedTokenizerBase): | |
del attribute.init_kwargs["auto_map"] | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_processor_file = os.path.join(save_directory, PROCESSOR_NAME) | |
# For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and | |
# `auto_map` is not specified. | |
if set(self.to_dict().keys()) != {"processor_class"}: | |
self.to_json_file(output_processor_file) | |
logger.info(f"processor saved in {output_processor_file}") | |
if push_to_hub: | |
self._upload_modified_files( | |
save_directory, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=kwargs.get("token"), | |
) | |
if set(self.to_dict().keys()) == {"processor_class"}: | |
return [] | |
return [output_processor_file] | |
def get_processor_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
""" | |
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a | |
processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
Returns: | |
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object. | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", "") | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME) | |
if os.path.isfile(pretrained_model_name_or_path): | |
resolved_processor_file = pretrained_model_name_or_path | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
processor_file = pretrained_model_name_or_path | |
resolved_processor_file = download_url(pretrained_model_name_or_path) | |
else: | |
processor_file = PROCESSOR_NAME | |
try: | |
# Load from local folder or from cache or download from model Hub and cache | |
resolved_processor_file = cached_file( | |
pretrained_model_name_or_path, | |
processor_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder, | |
_raise_exceptions_for_missing_entries=False, | |
) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
# the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" | |
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" | |
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" | |
f" directory containing a {PROCESSOR_NAME} file" | |
) | |
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not | |
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. | |
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) | |
# However, for models added in the future, we won't get the expected error if this file is missing. | |
if resolved_processor_file is None: | |
return {}, kwargs | |
try: | |
# Load processor dict | |
with open(resolved_processor_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
processor_dict = json.loads(text) | |
except json.JSONDecodeError: | |
raise EnvironmentError( | |
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." | |
) | |
if is_local: | |
logger.info(f"loading configuration file {resolved_processor_file}") | |
else: | |
logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}") | |
if "auto_map" in processor_dict and not is_local: | |
processor_dict["auto_map"] = add_model_info_to_auto_map( | |
processor_dict["auto_map"], pretrained_model_name_or_path | |
) | |
return processor_dict, kwargs | |
def from_args_and_dict(cls, args, processor_dict: Dict[str, Any], **kwargs): | |
""" | |
Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters. | |
Args: | |
processor_dict (`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the processor object. Such a dictionary can be | |
retrieved from a pretrained checkpoint by leveraging the | |
[`~processing_utils.ProcessingMixin.to_dict`] method. | |
kwargs (`Dict[str, Any]`): | |
Additional parameters from which to initialize the processor object. | |
Returns: | |
[`~processing_utils.ProcessingMixin`]: The processor object instantiated from those | |
parameters. | |
""" | |
processor_dict = processor_dict.copy() | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
# Unlike image processors or feature extractors whose `__init__` accept `kwargs`, processor don't have `kwargs`. | |
# We have to pop up some unused (but specific) arguments to make it work. | |
if "processor_class" in processor_dict: | |
del processor_dict["processor_class"] | |
if "auto_map" in processor_dict: | |
del processor_dict["auto_map"] | |
processor = cls(*args, **processor_dict) | |
# Update processor with kwargs if needed | |
for key in set(kwargs.keys()): | |
if hasattr(processor, key): | |
setattr(processor, key, kwargs.pop(key)) | |
logger.info(f"Processor {processor}") | |
if return_unused_kwargs: | |
return processor, kwargs | |
else: | |
return processor | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
**kwargs, | |
): | |
r""" | |
Instantiate a processor associated with a pretrained model. | |
<Tip> | |
This class method is simply calling the feature extractor | |
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor | |
[`~image_processing_utils.ImageProcessingMixin`] and the tokenizer | |
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the | |
methods above for more information. | |
</Tip> | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on | |
huggingface.co. | |
- a path to a *directory* containing a feature extractor file saved using the | |
[`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. | |
- a path or url to a saved feature extractor JSON *file*, e.g., | |
`./my_model_directory/preprocessor_config.json`. | |
**kwargs | |
Additional keyword arguments passed along to both | |
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and | |
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. | |
""" | |
kwargs["cache_dir"] = cache_dir | |
kwargs["force_download"] = force_download | |
kwargs["local_files_only"] = local_files_only | |
kwargs["revision"] = revision | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
FutureWarning, | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if token is not None: | |
kwargs["token"] = token | |
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) | |
processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) | |
return cls.from_args_and_dict(args, processor_dict, **kwargs) | |
def register_for_auto_class(cls, auto_class="AutoProcessor"): | |
""" | |
Register this class with a given auto class. This should only be used for custom feature extractors as the ones | |
in the library are already mapped with `AutoProcessor`. | |
<Tip warning={true}> | |
This API is experimental and may have some slight breaking changes in the next releases. | |
</Tip> | |
Args: | |
auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`): | |
The auto class to register this new feature extractor with. | |
""" | |
if not isinstance(auto_class, str): | |
auto_class = auto_class.__name__ | |
import transformers.models.auto as auto_module | |
if not hasattr(auto_module, auto_class): | |
raise ValueError(f"{auto_class} is not a valid auto class.") | |
cls._auto_class = auto_class | |
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
args = [] | |
for attribute_name in cls.attributes: | |
class_name = getattr(cls, f"{attribute_name}_class") | |
if isinstance(class_name, tuple): | |
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) | |
use_fast = kwargs.get("use_fast", True) | |
if use_fast and classes[1] is not None: | |
attribute_class = classes[1] | |
else: | |
attribute_class = classes[0] | |
else: | |
attribute_class = getattr(transformers_module, class_name) | |
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) | |
return args | |
def model_input_names(self): | |
first_attribute = getattr(self, self.attributes[0]) | |
return getattr(first_attribute, "model_input_names", None) | |
ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub) | |
if ProcessorMixin.push_to_hub.__doc__ is not None: | |
ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format( | |
object="processor", object_class="AutoProcessor", object_files="processor files" | |
) | |