peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/transformers
/tf_utils.py
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Union | |
import numpy as np | |
import tensorflow as tf | |
from .feature_extraction_utils import BatchFeature | |
from .tokenization_utils_base import BatchEncoding | |
from .utils import logging | |
logger = logging.get_logger(__name__) | |
def shape_list(tensor: Union[tf.Tensor, np.ndarray]) -> List[int]: | |
""" | |
Deal with dynamic shape in tensorflow cleanly. | |
Args: | |
tensor (`tf.Tensor` or `np.ndarray`): The tensor we want the shape of. | |
Returns: | |
`List[int]`: The shape of the tensor as a list. | |
""" | |
if isinstance(tensor, np.ndarray): | |
return list(tensor.shape) | |
dynamic = tf.shape(tensor) | |
if tensor.shape == tf.TensorShape(None): | |
return dynamic | |
static = tensor.shape.as_list() | |
return [dynamic[i] if s is None else s for i, s in enumerate(static)] | |
def stable_softmax(logits: tf.Tensor, axis: Optional[int] = None, name: Optional[str] = None) -> tf.Tensor: | |
""" | |
Stable wrapper that returns the same output as `tf.nn.softmax`, but that works reliably with XLA on CPU. It is | |
meant as a workaround for the [following issue](https://github.com/tensorflow/tensorflow/issues/55682), and will be | |
removed after it gets fixed. The arguments and outputs are the same as `tf.nn.softmax`, and relies on the fact that | |
`softmax(x) = softmax(x + c)` (see https://ogunlao.github.io/2020/04/26/you_dont_really_know_softmax.html). | |
Args: | |
logits (`tf.Tensor`): | |
Must be one of the following types: half, float32, float64. | |
axis (`int`, *optional*): | |
The dimension softmax would be performed on. The default is -1 which indicates the last dimension. | |
name (`str`, *optional*): | |
A name for the operation. | |
Returns: | |
`tf.Tensor`: | |
A Tensor. Has the same type and shape as logits. | |
""" | |
# TODO: When the issue linked above gets sorted, add a check on TF version here and use the original function if | |
# it has the fix. After we drop the support for unfixed versions, remove this function. | |
return tf.nn.softmax(logits=logits + 1e-9, axis=axis, name=name) | |
def functional_layernorm(inputs, weight, bias, epsilon=1e-5, axis=-1): | |
# This is a very simplified functional layernorm, designed to duplicate | |
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port | |
# models in Transformers. | |
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(axis, int): | |
raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis.") | |
# Get mean and variance on the axis to be normalized | |
mean, variance = tf.nn.moments(inputs, axes=[axis], keepdims=True) | |
if axis != -1: | |
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions | |
# on every dimension except axis | |
shape = [1] * inputs.shape.rank | |
shape[axis] = shape_list(inputs)[axis] | |
weight = tf.reshape(weight, shape) | |
bias = tf.reshape(bias, shape) | |
# Compute layer normalization using the batch_normalization | |
# function. | |
outputs = tf.nn.batch_normalization( | |
inputs, | |
mean, | |
variance, | |
offset=bias, | |
scale=weight, | |
variance_epsilon=epsilon, | |
) | |
return outputs | |
def flatten(input, start_dim=0, end_dim=-1): | |
# Replicates the behavior of torch.flatten in TF | |
# If end_dim or start_dim is negative, count them from the end | |
if end_dim < 0: | |
end_dim += input.shape.rank | |
if start_dim < 0: | |
start_dim += input.shape.rank | |
if start_dim == end_dim: | |
return input | |
in_shape = tf.shape(input) | |
flattened_dim = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) | |
out_shape = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0) | |
return tf.reshape(input, out_shape) | |
def invert_attention_mask(encoder_attention_mask: tf.Tensor) -> tf.Tensor: | |
""" | |
Invert an attention mask (e.g., switches 0. and 1.). | |
Args: | |
encoder_attention_mask (`torch.Tensor`): An attention mask. | |
Returns: | |
`tf.Tensor`: The inverted attention mask. | |
""" | |
if not isinstance(encoder_attention_mask, tf.Tensor): | |
encoder_attention_mask = tf.convert_to_tensor(encoder_attention_mask) # Catches stray NumPy inputs | |
if encoder_attention_mask.shape.rank == 3: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] | |
if encoder_attention_mask.shape.rank == 2: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] | |
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition | |
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow | |
# /transformer/transformer_layers.py#L270 | |
# encoder_extended_attention_mask = (encoder_extended_attention_mask == | |
# encoder_extended_attention_mask.transpose(-1, -2)) | |
encoder_extended_attention_mask = ( | |
tf.cast(1, encoder_attention_mask.dtype) - encoder_extended_attention_mask | |
) * encoder_extended_attention_mask.dtype.min | |
return encoder_extended_attention_mask | |
def check_embeddings_within_bounds(tensor: tf.Tensor, embed_dim: int, tensor_name: str = "input_ids") -> None: | |
""" | |
`tf.gather`, on which TF embedding layers are based, won't check positive out of bound indices on GPU, returning | |
zeros instead. This function adds a check against that dangerous silent behavior. | |
Args: | |
tensor (`tf.Tensor`): The tensor of indices to check. | |
embed_dim (`int`): The embedding dimension. | |
tensor_name (`str`, *optional*): The name of the tensor to use in the error message. | |
""" | |
tf.debugging.assert_less( | |
tensor, | |
tf.cast(embed_dim, dtype=tensor.dtype), | |
message=( | |
f"The maximum value of {tensor_name} ({tf.math.reduce_max(tensor)}) must be smaller than the embedding " | |
f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." | |
), | |
) | |
def save_attributes_to_hdf5_group(group, name, data): | |
"""Saves attributes (data) of the specified name into the HDF5 group. | |
This method deals with an inherent problem of HDF5 file which is not able to store data larger than | |
HDF5_OBJECT_HEADER_LIMIT bytes. | |
Args: | |
group: A pointer to a HDF5 group. | |
name: A name of the attributes to save. | |
data: Attributes data to store. | |
Raises: | |
RuntimeError: If any single attribute is too large to be saved. | |
Copied from Keras to Transformers to avoid versioning issues. | |
""" | |
HDF5_OBJECT_HEADER_LIMIT = 64512 | |
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` | |
# because in that case even chunking the array would not make the saving | |
# possible. | |
bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT] | |
# Expecting this to never be true. | |
if bad_attributes: | |
raise RuntimeError( | |
"The following attributes cannot be saved to HDF5 file because " | |
f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " | |
f"bytes: {bad_attributes}" | |
) | |
data_npy = np.asarray(data) | |
num_chunks = 1 | |
chunked_data = np.array_split(data_npy, num_chunks) | |
# This will never loop forever thanks to the test above. | |
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): | |
num_chunks += 1 | |
chunked_data = np.array_split(data_npy, num_chunks) | |
if num_chunks > 1: | |
for chunk_id, chunk_data in enumerate(chunked_data): | |
group.attrs["%s%d" % (name, chunk_id)] = chunk_data | |
else: | |
group.attrs[name] = data | |
def load_attributes_from_hdf5_group(group, name): | |
"""Loads attributes of the specified name from the HDF5 group. | |
This method deals with an inherent problem of HDF5 file which is not able to store data larger than | |
HDF5_OBJECT_HEADER_LIMIT bytes. | |
Args: | |
group: A pointer to a HDF5 group. | |
name: A name of the attributes to load. | |
Returns: | |
data: Attributes data. | |
Copied from Keras to Transformers to avoid versioning issues. | |
""" | |
if name in group.attrs: | |
data = [n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs[name]] | |
else: | |
data = [] | |
chunk_id = 0 | |
while "%s%d" % (name, chunk_id) in group.attrs: | |
data.extend( | |
[n.decode("utf8") if hasattr(n, "decode") else n for n in group.attrs["%s%d" % (name, chunk_id)]] | |
) | |
chunk_id += 1 | |
return data | |
def expand_1d(data): | |
"""Expands 1-dimensional `Tensor`s into 2-dimensional `Tensor`s. | |
Copied from Keras to here to avoid versioning issues.""" | |
def _expand_single_1d_tensor(t): | |
if isinstance(t, tf.Tensor) and t.shape.rank == 1: | |
return tf.expand_dims(t, axis=-1) | |
return t | |
return tf.nest.map_structure(_expand_single_1d_tensor, data) | |
def convert_batch_encoding(*args, **kwargs): | |
# Convert HF BatchEncoding/BatchFeature objects in the inputs to dicts that Keras understands | |
if args and isinstance(args[0], (BatchEncoding, BatchFeature)): | |
args = list(args) | |
args[0] = dict(args[0]) | |
elif "x" in kwargs and isinstance(kwargs["x"], (BatchEncoding, BatchFeature)): | |
kwargs["x"] = dict(kwargs["x"]) | |
return args, kwargs | |