peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/transformers
/tokenization_utils.py
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Tokenization classes for python tokenizers. For fast tokenizers (provided by HuggingFace's tokenizers library) see | |
tokenization_utils_fast.py | |
""" | |
import bisect | |
import itertools | |
import re | |
import unicodedata | |
from collections import OrderedDict | |
from typing import Any, Dict, List, Optional, Tuple, Union, overload | |
from .tokenization_utils_base import ( | |
ENCODE_KWARGS_DOCSTRING, | |
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, | |
INIT_TOKENIZER_DOCSTRING, | |
AddedToken, | |
BatchEncoding, | |
EncodedInput, | |
EncodedInputPair, | |
PreTokenizedInput, | |
PreTokenizedInputPair, | |
PreTrainedTokenizerBase, | |
TextInput, | |
TextInputPair, | |
TruncationStrategy, | |
) | |
from .utils import PaddingStrategy, TensorType, add_end_docstrings, logging | |
logger = logging.get_logger(__name__) | |
# Slow tokenizers are saved in a vocabulary plus three separated files | |
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" | |
ADDED_TOKENS_FILE = "added_tokens.json" | |
TOKENIZER_CONFIG_FILE = "tokenizer_config.json" | |
class Trie: | |
""" | |
Trie in Python. Creates a Trie out of a list of words. The trie is used to split on `added_tokens` in one pass | |
Loose reference https://en.wikipedia.org/wiki/Trie | |
""" | |
def __init__(self): | |
self.data = {} | |
self._tokens = set() | |
def add(self, word: str): | |
""" | |
Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation. | |
The special key `""` is used to represent termination. | |
This function is idempotent, adding twice the same word will leave the trie unchanged | |
Example: | |
```python | |
>>> trie = Trie() | |
>>> trie.add("Hello ει") | |
>>> trie.data | |
{"H": {"e": {"l": {"l": {"o": {" ": {"ε": {"ι": {"": 1}}}}}}}}} | |
>>> trie.add("Hello") | |
>>> trie.data | |
{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"ε": {"ι": {"": 1}}}}}}}}} | |
``` | |
""" | |
if not word: | |
# Prevent empty string | |
return | |
self._tokens.add(word) | |
ref = self.data | |
for char in word: | |
ref[char] = char in ref and ref[char] or {} | |
ref = ref[char] | |
ref[""] = 1 | |
def split(self, text: str) -> List[str]: | |
""" | |
Will look for the words added to the trie within `text`. Output is the original string splitted along the | |
boundaries of the words found. | |
This trie will match the longest possible word first ! | |
Example: | |
```python | |
>>> trie = Trie() | |
>>> trie.split("[CLS] This is a extra_id_100") | |
["[CLS] This is a extra_id_100"] | |
>>> trie.add("[CLS]") | |
>>> trie.add("extra_id_1") | |
>>> trie.add("extra_id_100") | |
>>> trie.split("[CLS] This is a extra_id_100") | |
["[CLS]", " This is a ", "extra_id_100"] | |
``` | |
""" | |
# indexes are counted left of the chars index. | |
# "hello", index 0, is left of h, index 1 is between h and e. | |
# index 5 is right of the "o". | |
# States are going to capture every possible start (indexes as above) | |
# as keys, and have as values, a pointer to the position in the trie | |
# where we're at. This is a partial match for now. | |
# This enables to keep track of multiple matches while we're iterating | |
# the string | |
# If the trie contains, "blowing", and "lower" and we encounter the | |
# string "blower", we need to split into ["b", "lower"]. | |
# This is where we need to keep track of multiple possible starts. | |
states = OrderedDict() | |
# This will contain every indices where we need | |
# to cut. | |
# We force to cut at offset 0 and len(text) (added later) | |
offsets = [0] | |
# This is used by the lookahead which needs to skip over | |
# some text where the full match exceeded the place in the initial | |
# for loop | |
skip = 0 | |
# Main loop, Giving this algorithm O(n) complexity | |
for current, current_char in enumerate(text): | |
if skip and current < skip: | |
# Prevents the lookahead for matching twice | |
# like extra_id_100 and id_100 | |
continue | |
# This will track every state | |
# that stop matching, we need to stop tracking them. | |
# If we look at "lowball", we're going to match "l" (add it to states), "o", "w", then | |
# fail on "b", we need to remove 0 from the valid states. | |
to_remove = set() | |
# Whenever we found a match, we need to drop everything | |
# this is a greedy algorithm, it will match on the first found token | |
reset = False | |
# In this case, we already have partial matches (But unfinished) | |
for start, trie_pointer in states.items(): | |
if "" in trie_pointer: | |
# This is a final match, we need to reset and | |
# store the results in `offsets`. | |
# Lookahead to match longest first | |
# Important in case of extra_id_1 vs extra_id_100 | |
# Here we are also actively looking for other earlier partial | |
# matches | |
# "[CLS]", "L", we need to match CLS even if L is special | |
for lookstart, looktrie_pointer in states.items(): | |
if lookstart > start: | |
# This partial match is later, we can stop looking | |
break | |
elif lookstart < start: | |
# This partial match is earlier, the trie pointer | |
# was already updated, so index is + 1 | |
lookahead_index = current + 1 | |
end = current + 1 | |
else: | |
# Here lookstart == start and | |
# looktrie_pointer == trie_pointer | |
# It wasn't updated yet so indices are current ones | |
lookahead_index = current | |
end = current | |
next_char = text[lookahead_index] if lookahead_index < len(text) else None | |
if "" in looktrie_pointer: | |
start = lookstart | |
end = lookahead_index | |
skip = lookahead_index | |
while next_char in looktrie_pointer: | |
looktrie_pointer = looktrie_pointer[next_char] | |
lookahead_index += 1 | |
if "" in looktrie_pointer: | |
start = lookstart | |
end = lookahead_index | |
skip = lookahead_index | |
if lookahead_index == len(text): | |
# End of string | |
break | |
next_char = text[lookahead_index] | |
# End lookahead | |
# Storing and resetting | |
offsets.append(start) | |
offsets.append(end) | |
reset = True | |
break | |
elif current_char in trie_pointer: | |
# The current character being looked at has a match within the trie | |
# update the pointer (it will be stored back into states later). | |
trie_pointer = trie_pointer[current_char] | |
# Storing back the new pointer into the states. | |
# Partial matches got longer by one. | |
states[start] = trie_pointer | |
else: | |
# The new character has not match in the trie, we need | |
# to stop keeping track of this partial match. | |
# We can't do it directly within the loop because of how | |
# python iteration works | |
to_remove.add(start) | |
# Either clearing the full start (we found a real match) | |
# Or clearing only the partial matches that didn't work. | |
if reset: | |
states = {} | |
else: | |
for start in to_remove: | |
del states[start] | |
# If this character is a starting character within the trie | |
# start keeping track of this partial match. | |
if current >= skip and current_char in self.data: | |
states[current] = self.data[current_char] | |
# We have a cut at the end with states. | |
for start, trie_pointer in states.items(): | |
if "" in trie_pointer: | |
# This is a final match, we need to reset and | |
# store the results in `offsets`. | |
end = len(text) | |
offsets.append(start) | |
offsets.append(end) | |
# Longest cut is always the one with lower start so the first | |
# item so we need to break. | |
break | |
return self.cut_text(text, offsets) | |
def cut_text(self, text, offsets): | |
# We have all the offsets now, we just need to do the actual splitting. | |
# We need to eventually add the first part of the string and the eventual | |
# last part. | |
offsets.append(len(text)) | |
tokens = [] | |
start = 0 | |
for end in offsets: | |
if start > end: | |
logger.error( | |
"There was a bug in Trie algorithm in tokenization. Attempting to recover. Please report it" | |
" anyway." | |
) | |
continue | |
elif start == end: | |
# This might happen if there's a match at index 0 | |
# we're also preventing zero-width cuts in case of two | |
# consecutive matches | |
continue | |
tokens.append(text[start:end]) | |
start = end | |
return tokens | |
def _is_whitespace(char): | |
"""Checks whether `char` is a whitespace character.""" | |
# \t, \n, and \r are technically control characters but we treat them | |
# as whitespace since they are generally considered as such. | |
if char == " " or char == "\t" or char == "\n" or char == "\r": | |
return True | |
cat = unicodedata.category(char) | |
if cat == "Zs": | |
return True | |
return False | |
def _is_control(char): | |
"""Checks whether `char` is a control character.""" | |
# These are technically control characters but we count them as whitespace | |
# characters. | |
if char == "\t" or char == "\n" or char == "\r": | |
return False | |
cat = unicodedata.category(char) | |
if cat.startswith("C"): | |
return True | |
return False | |
def _is_punctuation(char): | |
"""Checks whether `char` is a punctuation character.""" | |
cp = ord(char) | |
# We treat all non-letter/number ASCII as punctuation. | |
# Characters such as "^", "$", and "`" are not in the Unicode | |
# Punctuation class but we treat them as punctuation anyways, for | |
# consistency. | |
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): | |
return True | |
cat = unicodedata.category(char) | |
if cat.startswith("P"): | |
return True | |
return False | |
def _is_end_of_word(text): | |
"""Checks whether the last character in text is one of a punctuation, control or whitespace character.""" | |
last_char = text[-1] | |
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char)) | |
def _is_start_of_word(text): | |
"""Checks whether the first character in text is one of a punctuation, control or whitespace character.""" | |
first_char = text[0] | |
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char)) | |
def _insert_one_token_to_ordered_list(token_list: List[str], new_token: str): | |
""" | |
Inserts one token to an ordered list if it does not already exist. Note: token_list must be sorted. | |
""" | |
insertion_idx = bisect.bisect_left(token_list, new_token) | |
# Checks if new_token is already in the ordered token_list | |
if insertion_idx < len(token_list) and token_list[insertion_idx] == new_token: | |
# new_token is in token_list, don't add | |
return | |
else: | |
token_list.insert(insertion_idx, new_token) | |
class PreTrainedTokenizer(PreTrainedTokenizerBase): | |
""" | |
Base class for all slow tokenizers. | |
Inherits from [`~tokenization_utils_base.PreTrainedTokenizerBase`]. | |
Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading | |
pretrained tokenizers as well as adding tokens to the vocabulary. | |
This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the | |
specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...). | |
""" | |
def __init__(self, **kwargs): | |
# 1. Init the parent class | |
self.tokens_trie = Trie() | |
# 2. init `_added_tokens_decoder` if child class did not | |
if not hasattr(self, "_added_tokens_decoder"): | |
self._added_tokens_decoder: Dict[int, AddedToken] = {} | |
# 3. if a `added_tokens_decoder` is passed, we are loading from a saved tokenizer, we overwrite | |
self._added_tokens_decoder.update(kwargs.pop("added_tokens_decoder", {})) | |
self._added_tokens_encoder: Dict[str, int] = {k.content: v for v, k in self._added_tokens_decoder.items()} | |
# 4 init the parent class | |
super().__init__(**kwargs) | |
# 4. If some of the special tokens are not part of the vocab, we add them, at the end. | |
# the order of addition is the same as self.SPECIAL_TOKENS_ATTRIBUTES following `tokenizers` | |
self._add_tokens( | |
[token for token in self.all_special_tokens_extended if token not in self._added_tokens_encoder], | |
special_tokens=True, | |
) | |
self._decode_use_source_tokenizer = False | |
def is_fast(self) -> bool: | |
return False | |
def vocab_size(self) -> int: | |
""" | |
`int`: Size of the base vocabulary (without the added tokens). | |
""" | |
raise NotImplementedError | |
def added_tokens_encoder(self) -> Dict[str, int]: | |
""" | |
Returns the sorted mapping from string to index. The added tokens encoder is cached for performance | |
optimisation in `self._added_tokens_encoder` for the slow tokenizers. | |
""" | |
return {k.content: v for v, k in sorted(self._added_tokens_decoder.items(), key=lambda item: item[0])} | |
def added_tokens_decoder(self) -> Dict[int, AddedToken]: | |
""" | |
Returns the added tokens in the vocabulary as a dictionary of index to AddedToken. | |
Returns: | |
`Dict[str, int]`: The added tokens. | |
""" | |
return dict(sorted(self._added_tokens_decoder.items(), key=lambda item: item[0])) | |
def added_tokens_decoder(self, value: Dict[int, Union[AddedToken, str]]) -> Dict[int, AddedToken]: | |
# Always raise an error if string because users should define the behavior | |
for index, token in value.items(): | |
if not isinstance(token, (str, AddedToken)) or not isinstance(index, int): | |
raise ValueError( | |
f"The provided `added_tokens_decoder` has an element of type {index.__class__, token.__class__}, should be a dict of {int, Union[AddedToken, str]}" | |
) | |
self._added_tokens_decoder[index] = AddedToken(token) if isinstance(token, str) else token | |
self._added_tokens_encoder[str(token)] = index | |
def get_added_vocab(self) -> Dict[str, int]: | |
""" | |
Returns the added tokens in the vocabulary as a dictionary of token to index. Results might be different from | |
the fast call because for now we always add the tokens even if they are already in the vocabulary. This is | |
something we should change. | |
Returns: | |
`Dict[str, int]`: The added tokens. | |
""" | |
return self._added_tokens_encoder | |
def __len__(self): | |
""" | |
Size of the full vocabulary with the added tokens. Counts the `keys` and not the `values` because otherwise if | |
there is a hole in the vocab, we will add tokenizers at a wrong index. | |
""" | |
return len(set(self.get_vocab().keys())) | |
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: | |
""" | |
Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to | |
it with indices starting from length of the current vocabulary. Special tokens are sometimes already in the | |
vocab which is why they have to be handled specifically. | |
Args: | |
new_tokens (`List[str]`or `List[tokenizers.AddedToken]`): | |
Token(s) to add in vocabulary. A token is counted as added if it's not already in the vocabulary | |
(tested by checking if the tokenizer assign the index of the `unk_token` to them). If a token is part | |
of the vocabulary then we simply mark this token as an `AddedToken` which allows to control the | |
stripping and normalization of this token. This is NOT possible in `tokenizers`. | |
special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the tokens should be added as special tokens. | |
Returns: | |
`int`: The number of tokens actually added to the vocabulary. | |
Examples: | |
```python | |
# Let's see how to increase the vocabulary of Bert model and tokenizer | |
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") | |
model = BertModel.from_pretrained("google-bert/bert-base-uncased") | |
num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) | |
print("We have added", num_added_toks, "tokens") | |
# Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer. | |
model.resize_token_embeddings(len(tokenizer)) | |
```""" | |
added_tokens = 0 | |
if new_tokens is None: | |
return added_tokens | |
# TODO this is fairly slow to improve! | |
current_vocab = self.get_vocab().copy() | |
new_idx = len(current_vocab) # only call this once, len gives the last index + 1 | |
for token in new_tokens: | |
if not isinstance(token, (str, AddedToken)): | |
raise TypeError(f"Token {token} is not a string but a {type(token)}.") | |
if str(token) == "": | |
continue | |
if isinstance(token, str): | |
if token in self._added_tokens_encoder: | |
continue | |
else: | |
# very important for fast and slow equivalence! | |
is_special = token in self.all_special_tokens or special_tokens | |
token = AddedToken( | |
token, rstrip=False, lstrip=False, normalized=not is_special, special=is_special | |
) | |
elif special_tokens: | |
# doing token.special=True changes the normalization! will fix in rust | |
# this is important and the only reason why the AddedTokens in each class are normalized by default | |
token.__setstate__({"special": True, "normalized": token.normalized}) | |
if token in self._added_tokens_decoder: | |
continue | |
if not token.special and token.normalized and getattr(self, "do_lower_case", False): | |
# Normalize if requested | |
token.content = token.content.lower() | |
if token.content not in current_vocab: | |
token_index = new_idx + added_tokens | |
current_vocab[token.content] = token_index | |
added_tokens += 1 | |
else: | |
token_index = current_vocab[token.content] | |
if token.special and str(token) not in self.all_special_tokens: | |
self._additional_special_tokens.append(token) | |
# the setter automatically updates the reverse map | |
self._added_tokens_decoder[token_index] = token | |
self._added_tokens_encoder[token.content] = token_index | |
if self.verbose: | |
logger.info(f"Adding {token} to the vocabulary") | |
self._update_trie() | |
return added_tokens | |
def _update_trie(self, unique_no_split_tokens: Optional[str] = []): | |
for token in self._added_tokens_decoder.values(): | |
if token not in self.tokens_trie._tokens: | |
self.tokens_trie.add(token.content) | |
for token in unique_no_split_tokens: | |
if token not in self.tokens_trie._tokens: | |
self.tokens_trie.add(token) | |
def num_special_tokens_to_add(self, pair: bool = False) -> int: | |
""" | |
Returns the number of added tokens when encoding a sequence with special tokens. | |
<Tip> | |
This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put | |
this inside your training loop. | |
</Tip> | |
Args: | |
pair (`bool`, *optional*, defaults to `False`): | |
Whether the number of added tokens should be computed in the case of a sequence pair or a single | |
sequence. | |
Returns: | |
`int`: Number of special tokens added to sequences. | |
""" | |
token_ids_0 = [] | |
token_ids_1 = [] | |
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None)) | |
def tokenize(self, text: TextInput, **kwargs) -> List[str]: | |
""" | |
Converts a string into a sequence of tokens, using the tokenizer. | |
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies | |
(BPE/SentencePieces/WordPieces). Takes care of added tokens. | |
Args: | |
text (`str`): | |
The sequence to be encoded. | |
**kwargs (additional keyword arguments): | |
Passed along to the model-specific `prepare_for_tokenization` preprocessing method. | |
Returns: | |
`List[str]`: The list of tokens. | |
""" | |
split_special_tokens = kwargs.pop("split_special_tokens", self.split_special_tokens) | |
text, kwargs = self.prepare_for_tokenization(text, **kwargs) | |
if kwargs: | |
logger.warning(f"Keyword arguments {kwargs} not recognized.") | |
if hasattr(self, "do_lower_case") and self.do_lower_case: | |
# convert non-special tokens to lowercase. Might be super slow as well? | |
escaped_special_toks = [re.escape(s_tok) for s_tok in (self.all_special_tokens)] | |
escaped_special_toks += [ | |
re.escape(s_tok.content) | |
for s_tok in (self._added_tokens_decoder.values()) | |
if not s_tok.special and s_tok.normalized | |
] | |
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)" | |
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text) | |
if split_special_tokens: | |
no_split_token = [] | |
tokens = [text] | |
else: | |
no_split_token = self._added_tokens_encoder.keys() # don't split on any of the added tokens | |
# "This is something<special_token_1> else" | |
tokens = self.tokens_trie.split(text) | |
# ["This is something", "<special_token_1>", " else"] | |
for i, token in enumerate(tokens): | |
if token in no_split_token: | |
tok_extended = self._added_tokens_decoder.get(self._added_tokens_encoder[token], None) | |
left = tokens[i - 1] if i > 0 else None | |
right = tokens[i + 1] if i < len(tokens) - 1 else None | |
if isinstance(tok_extended, AddedToken): | |
if tok_extended.rstrip and right: | |
# A bit counter-intuitive but we strip the left of the string | |
# since tok_extended.rstrip means the special token is eating all white spaces on its right | |
tokens[i + 1] = right.lstrip() | |
# Strip white spaces on the left | |
if tok_extended.lstrip and left: | |
tokens[i - 1] = left.rstrip() # Opposite here | |
if tok_extended.single_word and left and left[-1] != " ": | |
tokens[i - 1] += token | |
tokens[i] = "" | |
elif tok_extended.single_word and right and right[0] != " ": | |
tokens[i + 1] = token + tokens[i + 1] | |
tokens[i] = "" | |
else: | |
raise ValueError( | |
f"{tok_extended} cannot be tokenized because it was not properly added" | |
f" to the tokenizer. This means that it is not an `AddedToken` but a {type(tok_extended)}" | |
) | |
# ["This is something", "<special_token_1>", "else"] | |
tokenized_text = [] | |
for token in tokens: | |
# Need to skip eventual empty (fully stripped) tokens | |
if not token: | |
continue | |
if token in no_split_token: | |
tokenized_text.append(token) | |
else: | |
tokenized_text.extend(self._tokenize(token)) | |
# ["This", " is", " something", "<special_token_1>", "else"] | |
return tokenized_text | |
def _tokenize(self, text, **kwargs): | |
""" | |
Converts a string into a sequence of tokens (string), using the tokenizer. Split in words for word-based | |
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). | |
Do NOT take care of added tokens. | |
""" | |
raise NotImplementedError | |
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]: | |
""" | |
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the | |
vocabulary. | |
Args: | |
tokens (`str` or `List[str]`): One or several token(s) to convert to token id(s). | |
Returns: | |
`int` or `List[int]`: The token id or list of token ids. | |
""" | |
if tokens is None: | |
return None | |
if isinstance(tokens, str): | |
return self._convert_token_to_id_with_added_voc(tokens) | |
ids = [] | |
for token in tokens: | |
ids.append(self._convert_token_to_id_with_added_voc(token)) | |
return ids | |
def _convert_token_to_id_with_added_voc(self, token): | |
if token is None: | |
return None | |
if token in self._added_tokens_encoder: | |
return self._added_tokens_encoder[token] | |
return self._convert_token_to_id(token) | |
def _convert_token_to_id(self, token): | |
raise NotImplementedError | |
def _encode_plus( | |
self, | |
text: Union[TextInput, PreTokenizedInput, EncodedInput], | |
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
is_split_into_words: bool = False, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
def get_input_ids(text): | |
if isinstance(text, str): | |
tokens = self.tokenize(text, **kwargs) | |
return self.convert_tokens_to_ids(tokens) | |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): | |
if is_split_into_words: | |
tokens = list( | |
itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) | |
) | |
return self.convert_tokens_to_ids(tokens) | |
else: | |
return self.convert_tokens_to_ids(text) | |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): | |
return text | |
else: | |
if is_split_into_words: | |
raise ValueError( | |
f"Input {text} is not valid. Should be a string or a list/tuple of strings when" | |
" `is_split_into_words=True`." | |
) | |
else: | |
raise ValueError( | |
f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of" | |
" integers." | |
) | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast. " | |
"More information on available tokenizers at " | |
"https://github.com/huggingface/transformers/pull/2674" | |
) | |
first_ids = get_input_ids(text) | |
second_ids = get_input_ids(text_pair) if text_pair is not None else None | |
return self.prepare_for_model( | |
first_ids, | |
pair_ids=second_ids, | |
add_special_tokens=add_special_tokens, | |
padding=padding_strategy.value, | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
prepend_batch_axis=True, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
verbose=verbose, | |
) | |
def _batch_encode_plus( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
List[PreTokenizedInputPair], | |
List[EncodedInput], | |
List[EncodedInputPair], | |
], | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
is_split_into_words: bool = False, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
def get_input_ids(text): | |
if isinstance(text, str): | |
tokens = self.tokenize(text, **kwargs) | |
return self.convert_tokens_to_ids(tokens) | |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): | |
if is_split_into_words: | |
tokens = list( | |
itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text)) | |
) | |
return self.convert_tokens_to_ids(tokens) | |
else: | |
return self.convert_tokens_to_ids(text) | |
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): | |
return text | |
else: | |
raise ValueError( | |
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." | |
) | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast." | |
) | |
input_ids = [] | |
for ids_or_pair_ids in batch_text_or_text_pairs: | |
if not isinstance(ids_or_pair_ids, (list, tuple)): | |
ids, pair_ids = ids_or_pair_ids, None | |
elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)): | |
ids, pair_ids = ids_or_pair_ids, None | |
else: | |
ids, pair_ids = ids_or_pair_ids | |
first_ids = get_input_ids(ids) | |
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None | |
input_ids.append((first_ids, second_ids)) | |
batch_outputs = self._batch_prepare_for_model( | |
input_ids, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=return_tensors, | |
verbose=verbose, | |
) | |
return BatchEncoding(batch_outputs) | |
def _batch_prepare_for_model( | |
self, | |
batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]], | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[str] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It | |
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and | |
manages a moving window (with user defined stride) for overflowing tokens | |
Args: | |
batch_ids_pairs: list of tokenized input ids or input ids pairs | |
""" | |
batch_outputs = {} | |
for first_ids, second_ids in batch_ids_pairs: | |
outputs = self.prepare_for_model( | |
first_ids, | |
second_ids, | |
add_special_tokens=add_special_tokens, | |
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=None, # we pad in batch afterward | |
return_attention_mask=False, # we pad in batch afterward | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=None, # We convert the whole batch to tensors at the end | |
prepend_batch_axis=False, | |
verbose=verbose, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
batch_outputs = self.pad( | |
batch_outputs, | |
padding=padding_strategy.value, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) | |
return batch_outputs | |
def prepare_for_tokenization( | |
self, text: str, is_split_into_words: bool = False, **kwargs | |
) -> Tuple[str, Dict[str, Any]]: | |
""" | |
Performs any necessary transformations before tokenization. | |
This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the | |
`kwargs` at the end of the encoding process to be sure all the arguments have been used. | |
Args: | |
text (`str`): | |
The text to prepare. | |
is_split_into_words (`bool`, *optional*, defaults to `False`): | |
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the | |
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) | |
which it will tokenize. This is useful for NER or token classification. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Keyword arguments to use for the tokenization. | |
Returns: | |
`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs. | |
""" | |
return (text, kwargs) | |
def get_special_tokens_mask( | |
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of ids of the first sequence. | |
token_ids_1 (`List[int]`, *optional*): | |
List of ids of the second sequence. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
if token_ids_1 is not None: | |
raise ValueError( | |
"You should not supply a second sequence if the provided sequence of " | |
"ids is already formatted with special tokens for the model." | |
) | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0)) | |
def convert_ids_to_tokens(self, ids: int, skip_special_tokens: bool = False) -> str: | |
... | |
def convert_ids_to_tokens(self, ids: List[int], skip_special_tokens: bool = False) -> List[str]: | |
... | |
def convert_ids_to_tokens( | |
self, ids: Union[int, List[int]], skip_special_tokens: bool = False | |
) -> Union[str, List[str]]: | |
""" | |
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and | |
added tokens. | |
Args: | |
ids (`int` or `List[int]`): | |
The token id (or token ids) to convert to tokens. | |
skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to remove special tokens in the decoding. | |
Returns: | |
`str` or `List[str]`: The decoded token(s). | |
""" | |
if isinstance(ids, int): | |
if ids in self._added_tokens_decoder: | |
return self._added_tokens_decoder[ids].content | |
else: | |
return self._convert_id_to_token(ids) | |
tokens = [] | |
for index in ids: | |
index = int(index) | |
if skip_special_tokens and index in self.all_special_ids: | |
continue | |
if index in self._added_tokens_decoder: | |
tokens.append(self._added_tokens_decoder[index].content) | |
else: | |
tokens.append(self._convert_id_to_token(index)) | |
return tokens | |
def _convert_id_to_token(self, index: int) -> str: | |
raise NotImplementedError | |
def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
return " ".join(tokens) | |
def _decode( | |
self, | |
token_ids: List[int], | |
skip_special_tokens: bool = False, | |
clean_up_tokenization_spaces: bool = None, | |
spaces_between_special_tokens: bool = True, | |
**kwargs, | |
) -> str: | |
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) | |
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) | |
legacy_added_tokens = set(self._added_tokens_encoder.keys()) - set(self.all_special_tokens) | { | |
token for token in self.additional_special_tokens if self.convert_tokens_to_ids(token) >= self.vocab_size | |
} | |
# To avoid mixing byte-level and unicode for byte-level BPT | |
# we need to build string separately for added tokens and byte-level tokens | |
# cf. https://github.com/huggingface/transformers/issues/1133 | |
sub_texts = [] | |
current_sub_text = [] | |
# TODO @ArthurZ in version 5, special tokens should be handled in convert_tokens_to_string, while _convert_tokens_to_string | |
for token in filtered_tokens: | |
if skip_special_tokens and token in self.all_special_ids: | |
continue | |
if token in legacy_added_tokens: | |
if current_sub_text: | |
string = self.convert_tokens_to_string(current_sub_text) | |
if len(string) > 0: | |
sub_texts.append(string) | |
current_sub_text = [] | |
sub_texts.append(token) | |
else: | |
current_sub_text.append(token) | |
if current_sub_text: | |
sub_texts.append(self.convert_tokens_to_string(current_sub_text)) | |
if spaces_between_special_tokens: | |
text = " ".join(sub_texts) | |
else: | |
text = "".join(sub_texts) | |
clean_up_tokenization_spaces = ( | |
clean_up_tokenization_spaces | |
if clean_up_tokenization_spaces is not None | |
else self.clean_up_tokenization_spaces | |
) | |
if clean_up_tokenization_spaces: | |
clean_text = self.clean_up_tokenization(text) | |
return clean_text | |
else: | |
return text | |