peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/test
/ccg_semantics.doctest
| .. Copyright (C) 2001-2023 NLTK Project | |
| .. For license information, see LICENSE.TXT | |
| ============================================== | |
| Combinatory Categorial Grammar with semantics | |
| ============================================== | |
| ----- | |
| Chart | |
| ----- | |
| >>> from nltk.ccg import chart, lexicon | |
| >>> from nltk.ccg.chart import printCCGDerivation | |
| No semantics | |
| ------------------- | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- S, NP, N | |
| ... She => NP | |
| ... has => (S\\NP)/NP | |
| ... books => NP | |
| ... ''', | |
| ... False) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("She has books".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 3 parses | |
| >>> printCCGDerivation(parses[0]) | |
| She has books | |
| NP ((S\NP)/NP) NP | |
| --------------------> | |
| (S\NP) | |
| -------------------------< | |
| S | |
| >>> printCCGDerivation(parses[1]) | |
| She has books | |
| NP ((S\NP)/NP) NP | |
| ----->T | |
| (S/(S\NP)) | |
| --------------------> | |
| (S\NP) | |
| -------------------------> | |
| S | |
| >>> printCCGDerivation(parses[2]) | |
| She has books | |
| NP ((S\NP)/NP) NP | |
| ----->T | |
| (S/(S\NP)) | |
| ------------------>B | |
| (S/NP) | |
| -------------------------> | |
| S | |
| Simple semantics | |
| ------------------- | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- S, NP, N | |
| ... She => NP {she} | |
| ... has => (S\\NP)/NP {\\x y.have(y, x)} | |
| ... a => NP/N {\\P.exists z.P(z)} | |
| ... book => N {book} | |
| ... ''', | |
| ... True) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("She has a book".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 7 parses | |
| >>> printCCGDerivation(parses[0]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| -------------------------------------> | |
| NP {exists z.book(z)} | |
| -------------------------------------------------------------------> | |
| (S\NP) {\y.have(y,exists z.book(z))} | |
| -----------------------------------------------------------------------------< | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[1]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| --------------------------------------------------------->B | |
| ((S\NP)/N) {\P y.have(y,exists z.P(z))} | |
| -------------------------------------------------------------------> | |
| (S\NP) {\y.have(y,exists z.book(z))} | |
| -----------------------------------------------------------------------------< | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[2]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| -------------------------------------> | |
| NP {exists z.book(z)} | |
| -------------------------------------------------------------------> | |
| (S\NP) {\y.have(y,exists z.book(z))} | |
| -----------------------------------------------------------------------------> | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[3]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| --------------------------------------------------------->B | |
| ((S\NP)/N) {\P y.have(y,exists z.P(z))} | |
| -------------------------------------------------------------------> | |
| (S\NP) {\y.have(y,exists z.book(z))} | |
| -----------------------------------------------------------------------------> | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[4]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| ---------------------------------------->B | |
| (S/NP) {\x.have(she,x)} | |
| -------------------------------------> | |
| NP {exists z.book(z)} | |
| -----------------------------------------------------------------------------> | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[5]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| --------------------------------------------------------->B | |
| ((S\NP)/N) {\P y.have(y,exists z.P(z))} | |
| ------------------------------------------------------------------->B | |
| (S/N) {\P.have(she,exists z.P(z))} | |
| -----------------------------------------------------------------------------> | |
| S {have(she,exists z.book(z))} | |
| >>> printCCGDerivation(parses[6]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| ---------------------------------------->B | |
| (S/NP) {\x.have(she,x)} | |
| ------------------------------------------------------------------->B | |
| (S/N) {\P.have(she,exists z.P(z))} | |
| -----------------------------------------------------------------------------> | |
| S {have(she,exists z.book(z))} | |
| Complex semantics | |
| ------------------- | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- S, NP, N | |
| ... She => NP {she} | |
| ... has => (S\\NP)/NP {\\x y.have(y, x)} | |
| ... a => ((S\\NP)\\((S\\NP)/NP))/N {\\P R x.(exists z.P(z) & R(z,x))} | |
| ... book => N {book} | |
| ... ''', | |
| ... True) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("She has a book".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 2 parses | |
| >>> printCCGDerivation(parses[0]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book} | |
| ----------------------------------------------------------------------> | |
| ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))} | |
| ----------------------------------------------------------------------------------------------------< | |
| (S\NP) {\x.(exists z.book(z) & have(x,z))} | |
| --------------------------------------------------------------------------------------------------------------< | |
| S {(exists z.book(z) & have(she,z))} | |
| >>> printCCGDerivation(parses[1]) | |
| She has a book | |
| NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book} | |
| ---------->T | |
| (S/(S\NP)) {\F.F(she)} | |
| ----------------------------------------------------------------------> | |
| ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))} | |
| ----------------------------------------------------------------------------------------------------< | |
| (S\NP) {\x.(exists z.book(z) & have(x,z))} | |
| --------------------------------------------------------------------------------------------------------------> | |
| S {(exists z.book(z) & have(she,z))} | |
| Using conjunctions | |
| --------------------- | |
| # TODO: The semantics of "and" should have been more flexible | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- S, NP, N | |
| ... I => NP {I} | |
| ... cook => (S\\NP)/NP {\\x y.cook(x,y)} | |
| ... and => var\\.,var/.,var {\\P Q x y.(P(x,y) & Q(x,y))} | |
| ... eat => (S\\NP)/NP {\\x y.eat(x,y)} | |
| ... the => NP/N {\\x.the(x)} | |
| ... bacon => N {bacon} | |
| ... ''', | |
| ... True) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("I cook and eat the bacon".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 7 parses | |
| >>> printCCGDerivation(parses[0]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| -------------------------------> | |
| NP {the(bacon)} | |
| --------------------------------------------------------------------------------------------------------------------------------------------------> | |
| (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------< | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[1]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| --------------------------------------------------------------------------------------------------------------------------------------->B | |
| ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} | |
| --------------------------------------------------------------------------------------------------------------------------------------------------> | |
| (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------< | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[2]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| -------------------------------> | |
| NP {the(bacon)} | |
| --------------------------------------------------------------------------------------------------------------------------------------------------> | |
| (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------> | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[3]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| --------------------------------------------------------------------------------------------------------------------------------------->B | |
| ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} | |
| --------------------------------------------------------------------------------------------------------------------------------------------------> | |
| (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------> | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[4]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| --------------------------------------------------------------------------------------------------------------------------->B | |
| (S/NP) {\x.(eat(x,I) & cook(x,I))} | |
| -------------------------------> | |
| NP {the(bacon)} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------> | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[5]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| --------------------------------------------------------------------------------------------------------------------------------------->B | |
| ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------->B | |
| (S/N) {\x.(eat(the(x),I) & cook(the(x),I))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------> | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| >>> printCCGDerivation(parses[6]) | |
| I cook and eat the bacon | |
| NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| -------------------------------------------------------------------------------------> | |
| (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} | |
| -------------------------------------------------------------------------------------------------------------------< | |
| ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} | |
| --------------------------------------------------------------------------------------------------------------------------->B | |
| (S/NP) {\x.(eat(x,I) & cook(x,I))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------->B | |
| (S/N) {\x.(eat(the(x),I) & cook(the(x),I))} | |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------> | |
| S {(eat(the(bacon),I) & cook(the(bacon),I))} | |
| Tests from published papers | |
| ------------------------------ | |
| An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- S, NP | |
| ... I => NP {I} | |
| ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)} | |
| ... them => NP {them} | |
| ... money => NP {money} | |
| ... ''', | |
| ... True) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("I give them money".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 3 parses | |
| >>> printCCGDerivation(parses[0]) | |
| I give them money | |
| NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| --------------------------------------------------------------> | |
| (S\NP) {\z.give(money,them,z)} | |
| ----------------------------------------------------------------------< | |
| S {give(money,them,I)} | |
| >>> printCCGDerivation(parses[1]) | |
| I give them money | |
| NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| --------------------------------------------------------------> | |
| (S\NP) {\z.give(money,them,z)} | |
| ----------------------------------------------------------------------> | |
| S {give(money,them,I)} | |
| >>> printCCGDerivation(parses[2]) | |
| I give them money | |
| NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| ---------------------------------------------------------->B | |
| (S/NP) {\y.give(y,them,I)} | |
| ----------------------------------------------------------------------> | |
| S {give(money,them,I)} | |
| An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf | |
| >>> lex = lexicon.fromstring(''' | |
| ... :- N, NP, S | |
| ... money => N {money} | |
| ... that => (N\\N)/(S/NP) {\\P Q x.(P(x) & Q(x))} | |
| ... I => NP {I} | |
| ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)} | |
| ... them => NP {them} | |
| ... ''', | |
| ... True) | |
| >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) | |
| >>> parses = list(parser.parse("money that I give them".split())) | |
| >>> print(str(len(parses)) + " parses") | |
| 3 parses | |
| >>> printCCGDerivation(parses[0]) | |
| money that I give them | |
| N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| ---------------------------------------------------------->B | |
| (S/NP) {\y.give(y,them,I)} | |
| -------------------------------------------------------------------------------------------------> | |
| (N\N) {\Q x.(give(x,them,I) & Q(x))} | |
| ------------------------------------------------------------------------------------------------------------< | |
| N {\x.(give(x,them,I) & money(x))} | |
| >>> printCCGDerivation(parses[1]) | |
| money that I give them | |
| N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} | |
| ----------->T | |
| (N/(N\N)) {\F.F(money)} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| ---------------------------------------------------------->B | |
| (S/NP) {\y.give(y,them,I)} | |
| -------------------------------------------------------------------------------------------------> | |
| (N\N) {\Q x.(give(x,them,I) & Q(x))} | |
| ------------------------------------------------------------------------------------------------------------> | |
| N {\x.(give(x,them,I) & money(x))} | |
| >>> printCCGDerivation(parses[2]) | |
| money that I give them | |
| N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} | |
| ----------->T | |
| (N/(N\N)) {\F.F(money)} | |
| -------------------------------------------------->B | |
| (N/(S/NP)) {\P x.(P(x) & money(x))} | |
| -------->T | |
| (S/(S\NP)) {\F.F(I)} | |
| --------------------------------------------------> | |
| ((S\NP)/NP) {\y z.give(y,them,z)} | |
| ---------------------------------------------------------->B | |
| (S/NP) {\y.give(y,them,I)} | |
| ------------------------------------------------------------------------------------------------------------> | |
| N {\x.(give(x,them,I) & money(x))} | |
| ------- | |
| Lexicon | |
| ------- | |
| >>> from nltk.ccg import lexicon | |
| Parse lexicon with semantics | |
| >>> print(str(lexicon.fromstring( | |
| ... ''' | |
| ... :- S,NP | |
| ... | |
| ... IntransVsg :: S\\NP[sg] | |
| ... | |
| ... sleeps => IntransVsg {\\x.sleep(x)} | |
| ... eats => S\\NP[sg]/NP {\\x y.eat(x,y)} | |
| ... | |
| ... and => var\\var/var {\\x y.x & y} | |
| ... ''', | |
| ... True | |
| ... ))) | |
| and => ((_var0\_var0)/_var0) {(\x y.x & y)} | |
| eats => ((S\NP['sg'])/NP) {\x y.eat(x,y)} | |
| sleeps => (S\NP['sg']) {\x.sleep(x)} | |
| Parse lexicon without semantics | |
| >>> print(str(lexicon.fromstring( | |
| ... ''' | |
| ... :- S,NP | |
| ... | |
| ... IntransVsg :: S\\NP[sg] | |
| ... | |
| ... sleeps => IntransVsg | |
| ... eats => S\\NP[sg]/NP {sem=\\x y.eat(x,y)} | |
| ... | |
| ... and => var\\var/var | |
| ... ''', | |
| ... False | |
| ... ))) | |
| and => ((_var0\_var0)/_var0) | |
| eats => ((S\NP['sg'])/NP) | |
| sleeps => (S\NP['sg']) | |
| Semantics are missing | |
| >>> print(str(lexicon.fromstring( | |
| ... ''' | |
| ... :- S,NP | |
| ... | |
| ... eats => S\\NP[sg]/NP | |
| ... ''', | |
| ... True | |
| ... ))) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: eats => S\NP[sg]/NP must contain semantics because include_semantics is set to True | |
| ------------------------------------ | |
| CCG combinator semantics computation | |
| ------------------------------------ | |
| >>> from nltk.sem.logic import * | |
| >>> from nltk.ccg.logic import * | |
| >>> read_expr = Expression.fromstring | |
| Compute semantics from function application | |
| >>> print(str(compute_function_semantics(read_expr(r'\x.P(x)'), read_expr(r'book')))) | |
| P(book) | |
| >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'read')))) | |
| read(book) | |
| >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'\x.read(x)')))) | |
| read(book) | |
| Compute semantics from composition | |
| >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'\x.Q(x)')))) | |
| \x.P(Q(x)) | |
| >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'read')))) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: `read` must be a lambda expression | |
| Compute semantics from substitution | |
| >>> print(str(compute_substitution_semantics(read_expr(r'\x y.P(x,y)'), read_expr(r'\x.Q(x)')))) | |
| \x.P(x,Q(x)) | |
| >>> print(str(compute_substitution_semantics(read_expr(r'\x.P(x)'), read_expr(r'read')))) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: `\x.P(x)` must be a lambda expression with 2 arguments | |
| Compute type-raise semantics | |
| >>> print(str(compute_type_raised_semantics(read_expr(r'\x.P(x)')))) | |
| \F x.F(P(x)) | |
| >>> print(str(compute_type_raised_semantics(read_expr(r'\x.F(x)')))) | |
| \F1 x.F1(F(x)) | |
| >>> print(str(compute_type_raised_semantics(read_expr(r'\x y z.P(x,y,z)')))) | |
| \F x y z.F(P(x,y,z)) | |