peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/test
/classify.doctest
| .. Copyright (C) 2001-2023 NLTK Project | |
| .. For license information, see LICENSE.TXT | |
| ============= | |
| Classifiers | |
| ============= | |
| >>> from nltk.test.classify_fixt import setup_module | |
| >>> setup_module() | |
| Classifiers label tokens with category labels (or *class labels*). | |
| Typically, labels are represented with strings (such as ``"health"`` | |
| or ``"sports"``. In NLTK, classifiers are defined using classes that | |
| implement the `ClassifierI` interface, which supports the following operations: | |
| - self.classify(featureset) | |
| - self.classify_many(featuresets) | |
| - self.labels() | |
| - self.prob_classify(featureset) | |
| - self.prob_classify_many(featuresets) | |
| NLTK defines several classifier classes: | |
| - `ConditionalExponentialClassifier` | |
| - `DecisionTreeClassifier` | |
| - `MaxentClassifier` | |
| - `NaiveBayesClassifier` | |
| - `WekaClassifier` | |
| Classifiers are typically created by training them on a training | |
| corpus. | |
| Regression Tests | |
| ~~~~~~~~~~~~~~~~ | |
| We define a very simple training corpus with 3 binary features: ['a', | |
| 'b', 'c'], and are two labels: ['x', 'y']. We use a simple feature set so | |
| that the correct answers can be calculated analytically (although we | |
| haven't done this yet for all tests). | |
| >>> import nltk | |
| >>> train = [ | |
| ... (dict(a=1,b=1,c=1), 'y'), | |
| ... (dict(a=1,b=1,c=1), 'x'), | |
| ... (dict(a=1,b=1,c=0), 'y'), | |
| ... (dict(a=0,b=1,c=1), 'x'), | |
| ... (dict(a=0,b=1,c=1), 'y'), | |
| ... (dict(a=0,b=0,c=1), 'y'), | |
| ... (dict(a=0,b=1,c=0), 'x'), | |
| ... (dict(a=0,b=0,c=0), 'x'), | |
| ... (dict(a=0,b=1,c=1), 'y'), | |
| ... (dict(a=None,b=1,c=0), 'x'), | |
| ... ] | |
| >>> test = [ | |
| ... (dict(a=1,b=0,c=1)), # unseen | |
| ... (dict(a=1,b=0,c=0)), # unseen | |
| ... (dict(a=0,b=1,c=1)), # seen 3 times, labels=y,y,x | |
| ... (dict(a=0,b=1,c=0)), # seen 1 time, label=x | |
| ... ] | |
| Test the Naive Bayes classifier: | |
| >>> classifier = nltk.classify.NaiveBayesClassifier.train(train) | |
| >>> sorted(classifier.labels()) | |
| ['x', 'y'] | |
| >>> classifier.classify_many(test) | |
| ['y', 'x', 'y', 'x'] | |
| >>> for pdist in classifier.prob_classify_many(test): | |
| ... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y'))) | |
| 0.2500 0.7500 | |
| 0.5833 0.4167 | |
| 0.3571 0.6429 | |
| 0.7000 0.3000 | |
| >>> classifier.show_most_informative_features() | |
| Most Informative Features | |
| c = 0 x : y = 2.3 : 1.0 | |
| c = 1 y : x = 1.8 : 1.0 | |
| a = 1 y : x = 1.7 : 1.0 | |
| a = 0 x : y = 1.0 : 1.0 | |
| b = 0 x : y = 1.0 : 1.0 | |
| b = 1 x : y = 1.0 : 1.0 | |
| Test the Decision Tree classifier (without None): | |
| >>> classifier = nltk.classify.DecisionTreeClassifier.train( | |
| ... train[:-1], entropy_cutoff=0, | |
| ... support_cutoff=0) | |
| >>> sorted(classifier.labels()) | |
| ['x', 'y'] | |
| >>> print(classifier) | |
| c=0? .................................................. x | |
| a=0? ................................................ x | |
| a=1? ................................................ y | |
| c=1? .................................................. y | |
| <BLANKLINE> | |
| >>> classifier.classify_many(test) | |
| ['y', 'y', 'y', 'x'] | |
| >>> for pdist in classifier.prob_classify_many(test): | |
| ... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y'))) | |
| Traceback (most recent call last): | |
| . . . | |
| NotImplementedError | |
| Test the Decision Tree classifier (with None): | |
| >>> classifier = nltk.classify.DecisionTreeClassifier.train( | |
| ... train, entropy_cutoff=0, | |
| ... support_cutoff=0) | |
| >>> sorted(classifier.labels()) | |
| ['x', 'y'] | |
| >>> print(classifier) | |
| c=0? .................................................. x | |
| a=0? ................................................ x | |
| a=1? ................................................ y | |
| a=None? ............................................. x | |
| c=1? .................................................. y | |
| <BLANKLINE> | |
| Test SklearnClassifier, which requires the scikit-learn package. | |
| >>> from nltk.classify import SklearnClassifier | |
| >>> from sklearn.naive_bayes import BernoulliNB | |
| >>> from sklearn.svm import SVC | |
| >>> train_data = [({"a": 4, "b": 1, "c": 0}, "ham"), | |
| ... ({"a": 5, "b": 2, "c": 1}, "ham"), | |
| ... ({"a": 0, "b": 3, "c": 4}, "spam"), | |
| ... ({"a": 5, "b": 1, "c": 1}, "ham"), | |
| ... ({"a": 1, "b": 4, "c": 3}, "spam")] | |
| >>> classif = SklearnClassifier(BernoulliNB()).train(train_data) | |
| >>> test_data = [{"a": 3, "b": 2, "c": 1}, | |
| ... {"a": 0, "b": 3, "c": 7}] | |
| >>> classif.classify_many(test_data) | |
| ['ham', 'spam'] | |
| >>> classif = SklearnClassifier(SVC(), sparse=False).train(train_data) | |
| >>> classif.classify_many(test_data) | |
| ['ham', 'spam'] | |
| Test the Maximum Entropy classifier training algorithms; they should all | |
| generate the same results. | |
| >>> def print_maxent_test_header(): | |
| ... print(' '*11+''.join([' test[%s] ' % i | |
| ... for i in range(len(test))])) | |
| ... print(' '*11+' p(x) p(y)'*len(test)) | |
| ... print('-'*(11+15*len(test))) | |
| >>> def test_maxent(algorithm): | |
| ... print('%11s' % algorithm, end=' ') | |
| ... try: | |
| ... classifier = nltk.classify.MaxentClassifier.train( | |
| ... train, algorithm, trace=0, max_iter=1000) | |
| ... except Exception as e: | |
| ... print('Error: %r' % e) | |
| ... return | |
| ... | |
| ... for featureset in test: | |
| ... pdist = classifier.prob_classify(featureset) | |
| ... print('%8.2f%6.2f' % (pdist.prob('x'), pdist.prob('y')), end=' ') | |
| ... print() | |
| >>> print_maxent_test_header(); test_maxent('GIS'); test_maxent('IIS') | |
| test[0] test[1] test[2] test[3] | |
| p(x) p(y) p(x) p(y) p(x) p(y) p(x) p(y) | |
| ----------------------------------------------------------------------- | |
| GIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 | |
| IIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 | |
| >>> test_maxent('MEGAM'); test_maxent('TADM') # doctest: +SKIP | |
| MEGAM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 | |
| TADM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24 | |
| Regression tests for TypedMaxentFeatureEncoding | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| >>> from nltk.classify import maxent | |
| >>> train = [ | |
| ... ({'a': 1, 'b': 1, 'c': 1}, 'y'), | |
| ... ({'a': 5, 'b': 5, 'c': 5}, 'x'), | |
| ... ({'a': 0.9, 'b': 0.9, 'c': 0.9}, 'y'), | |
| ... ({'a': 5.5, 'b': 5.4, 'c': 5.3}, 'x'), | |
| ... ({'a': 0.8, 'b': 1.2, 'c': 1}, 'y'), | |
| ... ({'a': 5.1, 'b': 4.9, 'c': 5.2}, 'x') | |
| ... ] | |
| >>> test = [ | |
| ... {'a': 1, 'b': 0.8, 'c': 1.2}, | |
| ... {'a': 5.2, 'b': 5.1, 'c': 5} | |
| ... ] | |
| >>> encoding = maxent.TypedMaxentFeatureEncoding.train( | |
| ... train, count_cutoff=3, alwayson_features=True) | |
| >>> classifier = maxent.MaxentClassifier.train( | |
| ... train, bernoulli=False, encoding=encoding, trace=0) | |
| >>> classifier.classify_many(test) | |
| ['y', 'x'] | |