peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/test
/metrics.doctest
| .. Copyright (C) 2001-2023 NLTK Project | |
| .. For license information, see LICENSE.TXT | |
| ======= | |
| Metrics | |
| ======= | |
| ----- | |
| Setup | |
| ----- | |
| >>> import pytest | |
| >>> _ = pytest.importorskip("numpy") | |
| The `nltk.metrics` package provides a variety of *evaluation measures* | |
| which can be used for a wide variety of NLP tasks. | |
| >>> from nltk.metrics import * | |
| ------------------ | |
| Standard IR Scores | |
| ------------------ | |
| We can use standard scores from information retrieval to test the | |
| performance of taggers, chunkers, etc. | |
| >>> reference = 'DET NN VB DET JJ NN NN IN DET NN'.split() | |
| >>> test = 'DET VB VB DET NN NN NN IN DET NN'.split() | |
| >>> print(accuracy(reference, test)) | |
| 0.8 | |
| The following measures apply to sets: | |
| >>> reference_set = set(reference) | |
| >>> test_set = set(test) | |
| >>> precision(reference_set, test_set) | |
| 1.0 | |
| >>> print(recall(reference_set, test_set)) | |
| 0.8 | |
| >>> print(f_measure(reference_set, test_set)) | |
| 0.88888888888... | |
| Measuring the likelihood of the data, given probability distributions: | |
| >>> from nltk import FreqDist, MLEProbDist | |
| >>> pdist1 = MLEProbDist(FreqDist("aldjfalskfjaldsf")) | |
| >>> pdist2 = MLEProbDist(FreqDist("aldjfalssjjlldss")) | |
| >>> print(log_likelihood(['a', 'd'], [pdist1, pdist2])) | |
| -2.7075187496... | |
| ---------------- | |
| Distance Metrics | |
| ---------------- | |
| String edit distance (Levenshtein): | |
| >>> edit_distance("rain", "shine") | |
| 3 | |
| >>> edit_distance_align("shine", "shine") | |
| [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)] | |
| >>> edit_distance_align("rain", "brainy") | |
| [(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (4, 6)] | |
| >>> edit_distance_align("", "brainy") | |
| [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)] | |
| >>> edit_distance_align("", "") | |
| [(0, 0)] | |
| Other distance measures: | |
| >>> s1 = set([1,2,3,4]) | |
| >>> s2 = set([3,4,5]) | |
| >>> binary_distance(s1, s2) | |
| 1.0 | |
| >>> print(jaccard_distance(s1, s2)) | |
| 0.6 | |
| >>> print(masi_distance(s1, s2)) | |
| 0.868 | |
| ---------------------- | |
| Miscellaneous Measures | |
| ---------------------- | |
| Rank Correlation works with two dictionaries mapping keys to ranks. | |
| The dictionaries should have the same set of keys. | |
| >>> spearman_correlation({'e':1, 't':2, 'a':3}, {'e':1, 'a':2, 't':3}) | |
| 0.5 | |
| Windowdiff uses a sliding window in comparing two segmentations of the same input (e.g. tokenizations, chunkings). | |
| Segmentations are represented using strings of zeros and ones. | |
| >>> s1 = "000100000010" | |
| >>> s2 = "000010000100" | |
| >>> s3 = "100000010000" | |
| >>> s4 = "000000000000" | |
| >>> s5 = "111111111111" | |
| >>> windowdiff(s1, s1, 3) | |
| 0.0 | |
| >>> abs(windowdiff(s1, s2, 3) - 0.3) < 1e-6 # windowdiff(s1, s2, 3) == 0.3 | |
| True | |
| >>> abs(windowdiff(s2, s3, 3) - 0.8) < 1e-6 # windowdiff(s2, s3, 3) == 0.8 | |
| True | |
| >>> windowdiff(s1, s4, 3) | |
| 0.5 | |
| >>> windowdiff(s1, s5, 3) | |
| 1.0 | |
| ---------------- | |
| Confusion Matrix | |
| ---------------- | |
| >>> reference = 'This is the reference data. Testing 123. aoaeoeoe' | |
| >>> test = 'Thos iz_the rifirenci data. Testeng 123. aoaeoeoe' | |
| >>> print(ConfusionMatrix(reference, test)) | |
| | . 1 2 3 T _ a c d e f g h i n o r s t z | | |
| --+-------------------------------------------+ | |
| |<8>. . . . . 1 . . . . . . . . . . . . . . | | |
| . | .<2>. . . . . . . . . . . . . . . . . . . | | |
| 1 | . .<1>. . . . . . . . . . . . . . . . . . | | |
| 2 | . . .<1>. . . . . . . . . . . . . . . . . | | |
| 3 | . . . .<1>. . . . . . . . . . . . . . . . | | |
| T | . . . . .<2>. . . . . . . . . . . . . . . | | |
| _ | . . . . . .<.>. . . . . . . . . . . . . . | | |
| a | . . . . . . .<4>. . . . . . . . . . . . . | | |
| c | . . . . . . . .<1>. . . . . . . . . . . . | | |
| d | . . . . . . . . .<1>. . . . . . . . . . . | | |
| e | . . . . . . . . . .<6>. . . 3 . . . . . . | | |
| f | . . . . . . . . . . .<1>. . . . . . . . . | | |
| g | . . . . . . . . . . . .<1>. . . . . . . . | | |
| h | . . . . . . . . . . . . .<2>. . . . . . . | | |
| i | . . . . . . . . . . 1 . . .<1>. 1 . . . . | | |
| n | . . . . . . . . . . . . . . .<2>. . . . . | | |
| o | . . . . . . . . . . . . . . . .<3>. . . . | | |
| r | . . . . . . . . . . . . . . . . .<2>. . . | | |
| s | . . . . . . . . . . . . . . . . . .<2>. 1 | | |
| t | . . . . . . . . . . . . . . . . . . .<3>. | | |
| z | . . . . . . . . . . . . . . . . . . . .<.>| | |
| --+-------------------------------------------+ | |
| (row = reference; col = test) | |
| <BLANKLINE> | |
| >>> cm = ConfusionMatrix(reference, test) | |
| >>> print(cm.pretty_format(sort_by_count=True)) | |
| | e a i o s t . T h n r 1 2 3 c d f g _ z | | |
| --+-------------------------------------------+ | |
| |<8>. . . . . . . . . . . . . . . . . . 1 . | | |
| e | .<6>. 3 . . . . . . . . . . . . . . . . . | | |
| a | . .<4>. . . . . . . . . . . . . . . . . . | | |
| i | . 1 .<1>1 . . . . . . . . . . . . . . . . | | |
| o | . . . .<3>. . . . . . . . . . . . . . . . | | |
| s | . . . . .<2>. . . . . . . . . . . . . . 1 | | |
| t | . . . . . .<3>. . . . . . . . . . . . . . | | |
| . | . . . . . . .<2>. . . . . . . . . . . . . | | |
| T | . . . . . . . .<2>. . . . . . . . . . . . | | |
| h | . . . . . . . . .<2>. . . . . . . . . . . | | |
| n | . . . . . . . . . .<2>. . . . . . . . . . | | |
| r | . . . . . . . . . . .<2>. . . . . . . . . | | |
| 1 | . . . . . . . . . . . .<1>. . . . . . . . | | |
| 2 | . . . . . . . . . . . . .<1>. . . . . . . | | |
| 3 | . . . . . . . . . . . . . .<1>. . . . . . | | |
| c | . . . . . . . . . . . . . . .<1>. . . . . | | |
| d | . . . . . . . . . . . . . . . .<1>. . . . | | |
| f | . . . . . . . . . . . . . . . . .<1>. . . | | |
| g | . . . . . . . . . . . . . . . . . .<1>. . | | |
| _ | . . . . . . . . . . . . . . . . . . .<.>. | | |
| z | . . . . . . . . . . . . . . . . . . . .<.>| | |
| --+-------------------------------------------+ | |
| (row = reference; col = test) | |
| <BLANKLINE> | |
| >>> print(cm.pretty_format(sort_by_count=True, truncate=10)) | |
| | e a i o s t . T h | | |
| --+---------------------+ | |
| |<8>. . . . . . . . . | | |
| e | .<6>. 3 . . . . . . | | |
| a | . .<4>. . . . . . . | | |
| i | . 1 .<1>1 . . . . . | | |
| o | . . . .<3>. . . . . | | |
| s | . . . . .<2>. . . . | | |
| t | . . . . . .<3>. . . | | |
| . | . . . . . . .<2>. . | | |
| T | . . . . . . . .<2>. | | |
| h | . . . . . . . . .<2>| | |
| --+---------------------+ | |
| (row = reference; col = test) | |
| <BLANKLINE> | |
| >>> print(cm.pretty_format(sort_by_count=True, truncate=10, values_in_chart=False)) | |
| | 1 | | |
| | 1 2 3 4 5 6 7 8 9 0 | | |
| ---+---------------------+ | |
| 1 |<8>. . . . . . . . . | | |
| 2 | .<6>. 3 . . . . . . | | |
| 3 | . .<4>. . . . . . . | | |
| 4 | . 1 .<1>1 . . . . . | | |
| 5 | . . . .<3>. . . . . | | |
| 6 | . . . . .<2>. . . . | | |
| 7 | . . . . . .<3>. . . | | |
| 8 | . . . . . . .<2>. . | | |
| 9 | . . . . . . . .<2>. | | |
| 10 | . . . . . . . . .<2>| | |
| ---+---------------------+ | |
| (row = reference; col = test) | |
| Value key: | |
| 1: | |
| 2: e | |
| 3: a | |
| 4: i | |
| 5: o | |
| 6: s | |
| 7: t | |
| 8: . | |
| 9: T | |
| 10: h | |
| <BLANKLINE> | |
| For "e", the number of true positives should be 6, while the number of false negatives is 3. | |
| So, the recall ought to be 6 / (6 + 3): | |
| >>> cm.recall("e") # doctest: +ELLIPSIS | |
| 0.666666... | |
| For "e", the false positive is just 1, so the precision should be 6 / (6 + 1): | |
| >>> cm.precision("e") # doctest: +ELLIPSIS | |
| 0.857142... | |
| The f-measure with default value of ``alpha = 0.5`` should then be: | |
| * *1/(alpha/p + (1-alpha)/r) =* | |
| * *1/(0.5/p + 0.5/r) =* | |
| * *2pr / (p + r) =* | |
| * *2 * 0.857142... * 0.666666... / (0.857142... + 0.666666...) =* | |
| * *0.749999...* | |
| >>> cm.f_measure("e") # doctest: +ELLIPSIS | |
| 0.749999... | |
| -------------------- | |
| Association measures | |
| -------------------- | |
| These measures are useful to determine whether the coocurrence of two random | |
| events is meaningful. They are used, for instance, to distinguish collocations | |
| from other pairs of adjacent words. | |
| We bring some examples of bigram association calculations from Manning and | |
| Schutze's SNLP, 2nd Ed. chapter 5. | |
| >>> n_new_companies, n_new, n_companies, N = 8, 15828, 4675, 14307668 | |
| >>> bam = BigramAssocMeasures | |
| >>> bam.raw_freq(20, (42, 20), N) == 20. / N | |
| True | |
| >>> bam.student_t(n_new_companies, (n_new, n_companies), N) | |
| 0.999... | |
| >>> bam.chi_sq(n_new_companies, (n_new, n_companies), N) | |
| 1.54... | |
| >>> bam.likelihood_ratio(150, (12593, 932), N) | |
| 1291... | |
| For other associations, we ensure the ordering of the measures: | |
| >>> bam.mi_like(20, (42, 20), N) > bam.mi_like(20, (41, 27), N) | |
| True | |
| >>> bam.pmi(20, (42, 20), N) > bam.pmi(20, (41, 27), N) | |
| True | |
| >>> bam.phi_sq(20, (42, 20), N) > bam.phi_sq(20, (41, 27), N) | |
| True | |
| >>> bam.poisson_stirling(20, (42, 20), N) > bam.poisson_stirling(20, (41, 27), N) | |
| True | |
| >>> bam.jaccard(20, (42, 20), N) > bam.jaccard(20, (41, 27), N) | |
| True | |
| >>> bam.dice(20, (42, 20), N) > bam.dice(20, (41, 27), N) | |
| True | |
| >>> bam.fisher(20, (42, 20), N) > bam.fisher(20, (41, 27), N) # doctest: +SKIP | |
| False | |
| For trigrams, we have to provide more count information: | |
| >>> n_w1_w2_w3 = 20 | |
| >>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40 | |
| >>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3) | |
| >>> n_w1, n_w2, n_w3 = 100, 200, 300 | |
| >>> uni_counts = (n_w1, n_w2, n_w3) | |
| >>> N = 14307668 | |
| >>> tam = TrigramAssocMeasures | |
| >>> tam.raw_freq(n_w1_w2_w3, pair_counts, uni_counts, N) == 1. * n_w1_w2_w3 / N | |
| True | |
| >>> uni_counts2 = (n_w1, n_w2, 100) | |
| >>> tam.student_t(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.student_t(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.pmi(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.pmi(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| >>> tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts, N) | |
| True | |
| For fourgrams, we have to provide more count information: | |
| >>> n_w1_w2_w3_w4 = 5 | |
| >>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40 | |
| >>> n_w1_w2_w3, n_w2_w3_w4 = 20, 10 | |
| >>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3) | |
| >>> triplet_counts = (n_w1_w2_w3, n_w2_w3_w4) | |
| >>> n_w1, n_w2, n_w3, n_w4 = 100, 200, 300, 400 | |
| >>> uni_counts = (n_w1, n_w2, n_w3, n_w4) | |
| >>> N = 14307668 | |
| >>> qam = QuadgramAssocMeasures | |
| >>> qam.raw_freq(n_w1_w2_w3_w4, pair_counts, triplet_counts, uni_counts, N) == 1. * n_w1_w2_w3_w4 / N | |
| True | |