peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/gaussiandomains.py
| """Domains of Gaussian type.""" | |
| from sympy.core.numbers import I | |
| from sympy.polys.polyerrors import CoercionFailed | |
| from sympy.polys.domains.integerring import ZZ | |
| from sympy.polys.domains.rationalfield import QQ | |
| from sympy.polys.domains.algebraicfield import AlgebraicField | |
| from sympy.polys.domains.domain import Domain | |
| from sympy.polys.domains.domainelement import DomainElement | |
| from sympy.polys.domains.field import Field | |
| from sympy.polys.domains.ring import Ring | |
| class GaussianElement(DomainElement): | |
| """Base class for elements of Gaussian type domains.""" | |
| base: Domain | |
| _parent: Domain | |
| __slots__ = ('x', 'y') | |
| def __new__(cls, x, y=0): | |
| conv = cls.base.convert | |
| return cls.new(conv(x), conv(y)) | |
| def new(cls, x, y): | |
| """Create a new GaussianElement of the same domain.""" | |
| obj = super().__new__(cls) | |
| obj.x = x | |
| obj.y = y | |
| return obj | |
| def parent(self): | |
| """The domain that this is an element of (ZZ_I or QQ_I)""" | |
| return self._parent | |
| def __hash__(self): | |
| return hash((self.x, self.y)) | |
| def __eq__(self, other): | |
| if isinstance(other, self.__class__): | |
| return self.x == other.x and self.y == other.y | |
| else: | |
| return NotImplemented | |
| def __lt__(self, other): | |
| if not isinstance(other, GaussianElement): | |
| return NotImplemented | |
| return [self.y, self.x] < [other.y, other.x] | |
| def __pos__(self): | |
| return self | |
| def __neg__(self): | |
| return self.new(-self.x, -self.y) | |
| def __repr__(self): | |
| return "%s(%s, %s)" % (self._parent.rep, self.x, self.y) | |
| def __str__(self): | |
| return str(self._parent.to_sympy(self)) | |
| def _get_xy(cls, other): | |
| if not isinstance(other, cls): | |
| try: | |
| other = cls._parent.convert(other) | |
| except CoercionFailed: | |
| return None, None | |
| return other.x, other.y | |
| def __add__(self, other): | |
| x, y = self._get_xy(other) | |
| if x is not None: | |
| return self.new(self.x + x, self.y + y) | |
| else: | |
| return NotImplemented | |
| __radd__ = __add__ | |
| def __sub__(self, other): | |
| x, y = self._get_xy(other) | |
| if x is not None: | |
| return self.new(self.x - x, self.y - y) | |
| else: | |
| return NotImplemented | |
| def __rsub__(self, other): | |
| x, y = self._get_xy(other) | |
| if x is not None: | |
| return self.new(x - self.x, y - self.y) | |
| else: | |
| return NotImplemented | |
| def __mul__(self, other): | |
| x, y = self._get_xy(other) | |
| if x is not None: | |
| return self.new(self.x*x - self.y*y, self.x*y + self.y*x) | |
| else: | |
| return NotImplemented | |
| __rmul__ = __mul__ | |
| def __pow__(self, exp): | |
| if exp == 0: | |
| return self.new(1, 0) | |
| if exp < 0: | |
| self, exp = 1/self, -exp | |
| if exp == 1: | |
| return self | |
| pow2 = self | |
| prod = self if exp % 2 else self._parent.one | |
| exp //= 2 | |
| while exp: | |
| pow2 *= pow2 | |
| if exp % 2: | |
| prod *= pow2 | |
| exp //= 2 | |
| return prod | |
| def __bool__(self): | |
| return bool(self.x) or bool(self.y) | |
| def quadrant(self): | |
| """Return quadrant index 0-3. | |
| 0 is included in quadrant 0. | |
| """ | |
| if self.y > 0: | |
| return 0 if self.x > 0 else 1 | |
| elif self.y < 0: | |
| return 2 if self.x < 0 else 3 | |
| else: | |
| return 0 if self.x >= 0 else 2 | |
| def __rdivmod__(self, other): | |
| try: | |
| other = self._parent.convert(other) | |
| except CoercionFailed: | |
| return NotImplemented | |
| else: | |
| return other.__divmod__(self) | |
| def __rtruediv__(self, other): | |
| try: | |
| other = QQ_I.convert(other) | |
| except CoercionFailed: | |
| return NotImplemented | |
| else: | |
| return other.__truediv__(self) | |
| def __floordiv__(self, other): | |
| qr = self.__divmod__(other) | |
| return qr if qr is NotImplemented else qr[0] | |
| def __rfloordiv__(self, other): | |
| qr = self.__rdivmod__(other) | |
| return qr if qr is NotImplemented else qr[0] | |
| def __mod__(self, other): | |
| qr = self.__divmod__(other) | |
| return qr if qr is NotImplemented else qr[1] | |
| def __rmod__(self, other): | |
| qr = self.__rdivmod__(other) | |
| return qr if qr is NotImplemented else qr[1] | |
| class GaussianInteger(GaussianElement): | |
| """Gaussian integer: domain element for :ref:`ZZ_I` | |
| >>> from sympy import ZZ_I | |
| >>> z = ZZ_I(2, 3) | |
| >>> z | |
| (2 + 3*I) | |
| >>> type(z) | |
| <class 'sympy.polys.domains.gaussiandomains.GaussianInteger'> | |
| """ | |
| base = ZZ | |
| def __truediv__(self, other): | |
| """Return a Gaussian rational.""" | |
| return QQ_I.convert(self)/other | |
| def __divmod__(self, other): | |
| if not other: | |
| raise ZeroDivisionError('divmod({}, 0)'.format(self)) | |
| x, y = self._get_xy(other) | |
| if x is None: | |
| return NotImplemented | |
| # multiply self and other by x - I*y | |
| # self/other == (a + I*b)/c | |
| a, b = self.x*x + self.y*y, -self.x*y + self.y*x | |
| c = x*x + y*y | |
| # find integers qx and qy such that | |
| # |a - qx*c| <= c/2 and |b - qy*c| <= c/2 | |
| qx = (2*a + c) // (2*c) # -c <= 2*a - qx*2*c < c | |
| qy = (2*b + c) // (2*c) | |
| q = GaussianInteger(qx, qy) | |
| # |self/other - q| < 1 since | |
| # |a/c - qx|**2 + |b/c - qy|**2 <= 1/4 + 1/4 < 1 | |
| return q, self - q*other # |r| < |other| | |
| class GaussianRational(GaussianElement): | |
| """Gaussian rational: domain element for :ref:`QQ_I` | |
| >>> from sympy import QQ_I, QQ | |
| >>> z = QQ_I(QQ(2, 3), QQ(4, 5)) | |
| >>> z | |
| (2/3 + 4/5*I) | |
| >>> type(z) | |
| <class 'sympy.polys.domains.gaussiandomains.GaussianRational'> | |
| """ | |
| base = QQ | |
| def __truediv__(self, other): | |
| """Return a Gaussian rational.""" | |
| if not other: | |
| raise ZeroDivisionError('{} / 0'.format(self)) | |
| x, y = self._get_xy(other) | |
| if x is None: | |
| return NotImplemented | |
| c = x*x + y*y | |
| return GaussianRational((self.x*x + self.y*y)/c, | |
| (-self.x*y + self.y*x)/c) | |
| def __divmod__(self, other): | |
| try: | |
| other = self._parent.convert(other) | |
| except CoercionFailed: | |
| return NotImplemented | |
| if not other: | |
| raise ZeroDivisionError('{} % 0'.format(self)) | |
| else: | |
| return self/other, QQ_I.zero | |
| class GaussianDomain(): | |
| """Base class for Gaussian domains.""" | |
| dom = None # type: Domain | |
| is_Numerical = True | |
| is_Exact = True | |
| has_assoc_Ring = True | |
| has_assoc_Field = True | |
| def to_sympy(self, a): | |
| """Convert ``a`` to a SymPy object. """ | |
| conv = self.dom.to_sympy | |
| return conv(a.x) + I*conv(a.y) | |
| def from_sympy(self, a): | |
| """Convert a SymPy object to ``self.dtype``.""" | |
| r, b = a.as_coeff_Add() | |
| x = self.dom.from_sympy(r) # may raise CoercionFailed | |
| if not b: | |
| return self.new(x, 0) | |
| r, b = b.as_coeff_Mul() | |
| y = self.dom.from_sympy(r) | |
| if b is I: | |
| return self.new(x, y) | |
| else: | |
| raise CoercionFailed("{} is not Gaussian".format(a)) | |
| def inject(self, *gens): | |
| """Inject generators into this domain. """ | |
| return self.poly_ring(*gens) | |
| def canonical_unit(self, d): | |
| unit = self.units[-d.quadrant()] # - for inverse power | |
| return unit | |
| def is_negative(self, element): | |
| """Returns ``False`` for any ``GaussianElement``. """ | |
| return False | |
| def is_positive(self, element): | |
| """Returns ``False`` for any ``GaussianElement``. """ | |
| return False | |
| def is_nonnegative(self, element): | |
| """Returns ``False`` for any ``GaussianElement``. """ | |
| return False | |
| def is_nonpositive(self, element): | |
| """Returns ``False`` for any ``GaussianElement``. """ | |
| return False | |
| def from_ZZ_gmpy(K1, a, K0): | |
| """Convert a GMPY mpz to ``self.dtype``.""" | |
| return K1(a) | |
| def from_ZZ(K1, a, K0): | |
| """Convert a ZZ_python element to ``self.dtype``.""" | |
| return K1(a) | |
| def from_ZZ_python(K1, a, K0): | |
| """Convert a ZZ_python element to ``self.dtype``.""" | |
| return K1(a) | |
| def from_QQ(K1, a, K0): | |
| """Convert a GMPY mpq to ``self.dtype``.""" | |
| return K1(a) | |
| def from_QQ_gmpy(K1, a, K0): | |
| """Convert a GMPY mpq to ``self.dtype``.""" | |
| return K1(a) | |
| def from_QQ_python(K1, a, K0): | |
| """Convert a QQ_python element to ``self.dtype``.""" | |
| return K1(a) | |
| def from_AlgebraicField(K1, a, K0): | |
| """Convert an element from ZZ<I> or QQ<I> to ``self.dtype``.""" | |
| if K0.ext.args[0] == I: | |
| return K1.from_sympy(K0.to_sympy(a)) | |
| class GaussianIntegerRing(GaussianDomain, Ring): | |
| r"""Ring of Gaussian integers ``ZZ_I`` | |
| The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]` | |
| as a :py:class:`~.Domain` in the domain system (see | |
| :ref:`polys-domainsintro`). | |
| By default a :py:class:`~.Poly` created from an expression with | |
| coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`) | |
| will have the domain :ref:`ZZ_I`. | |
| >>> from sympy import Poly, Symbol, I | |
| >>> x = Symbol('x') | |
| >>> p = Poly(x**2 + I) | |
| >>> p | |
| Poly(x**2 + I, x, domain='ZZ_I') | |
| >>> p.domain | |
| ZZ_I | |
| The :ref:`ZZ_I` domain can be used to factorise polynomials that are | |
| reducible over the Gaussian integers. | |
| >>> from sympy import factor | |
| >>> factor(x**2 + 1) | |
| x**2 + 1 | |
| >>> factor(x**2 + 1, domain='ZZ_I') | |
| (x - I)*(x + I) | |
| The corresponding `field of fractions`_ is the domain of the Gaussian | |
| rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_ | |
| of :ref:`QQ_I`. | |
| >>> from sympy import ZZ_I, QQ_I | |
| >>> ZZ_I.get_field() | |
| QQ_I | |
| >>> QQ_I.get_ring() | |
| ZZ_I | |
| When using the domain directly :ref:`ZZ_I` can be used as a constructor. | |
| >>> ZZ_I(3, 4) | |
| (3 + 4*I) | |
| >>> ZZ_I(5) | |
| (5 + 0*I) | |
| The domain elements of :ref:`ZZ_I` are instances of | |
| :py:class:`~.GaussianInteger` which support the rings operations | |
| ``+,-,*,**``. | |
| >>> z1 = ZZ_I(5, 1) | |
| >>> z2 = ZZ_I(2, 3) | |
| >>> z1 | |
| (5 + 1*I) | |
| >>> z2 | |
| (2 + 3*I) | |
| >>> z1 + z2 | |
| (7 + 4*I) | |
| >>> z1 * z2 | |
| (7 + 17*I) | |
| >>> z1 ** 2 | |
| (24 + 10*I) | |
| Both floor (``//``) and modulo (``%``) division work with | |
| :py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method). | |
| >>> z3, z4 = ZZ_I(5), ZZ_I(1, 3) | |
| >>> z3 // z4 # floor division | |
| (1 + -1*I) | |
| >>> z3 % z4 # modulo division (remainder) | |
| (1 + -2*I) | |
| >>> (z3//z4)*z4 + z3%z4 == z3 | |
| True | |
| True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The | |
| :py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when | |
| exact division is possible. | |
| >>> z1 / z2 | |
| (1 + -1*I) | |
| >>> ZZ_I.exquo(z1, z2) | |
| (1 + -1*I) | |
| >>> z3 / z4 | |
| (1/2 + -3/2*I) | |
| >>> ZZ_I.exquo(z3, z4) | |
| Traceback (most recent call last): | |
| ... | |
| ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I | |
| The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any | |
| two elements. | |
| >>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2)) | |
| (2 + 0*I) | |
| >>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1)) | |
| (2 + 1*I) | |
| .. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer | |
| .. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor | |
| """ | |
| dom = ZZ | |
| dtype = GaussianInteger | |
| zero = dtype(ZZ(0), ZZ(0)) | |
| one = dtype(ZZ(1), ZZ(0)) | |
| imag_unit = dtype(ZZ(0), ZZ(1)) | |
| units = (one, imag_unit, -one, -imag_unit) # powers of i | |
| rep = 'ZZ_I' | |
| is_GaussianRing = True | |
| is_ZZ_I = True | |
| def __init__(self): # override Domain.__init__ | |
| """For constructing ZZ_I.""" | |
| def get_ring(self): | |
| """Returns a ring associated with ``self``. """ | |
| return self | |
| def get_field(self): | |
| """Returns a field associated with ``self``. """ | |
| return QQ_I | |
| def normalize(self, d, *args): | |
| """Return first quadrant element associated with ``d``. | |
| Also multiply the other arguments by the same power of i. | |
| """ | |
| unit = self.canonical_unit(d) | |
| d *= unit | |
| args = tuple(a*unit for a in args) | |
| return (d,) + args if args else d | |
| def gcd(self, a, b): | |
| """Greatest common divisor of a and b over ZZ_I.""" | |
| while b: | |
| a, b = b, a % b | |
| return self.normalize(a) | |
| def lcm(self, a, b): | |
| """Least common multiple of a and b over ZZ_I.""" | |
| return (a * b) // self.gcd(a, b) | |
| def from_GaussianIntegerRing(K1, a, K0): | |
| """Convert a ZZ_I element to ZZ_I.""" | |
| return a | |
| def from_GaussianRationalField(K1, a, K0): | |
| """Convert a QQ_I element to ZZ_I.""" | |
| return K1.new(ZZ.convert(a.x), ZZ.convert(a.y)) | |
| ZZ_I = GaussianInteger._parent = GaussianIntegerRing() | |
| class GaussianRationalField(GaussianDomain, Field): | |
| r"""Field of Gaussian rationals ``QQ_I`` | |
| The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)` | |
| as a :py:class:`~.Domain` in the domain system (see | |
| :ref:`polys-domainsintro`). | |
| By default a :py:class:`~.Poly` created from an expression with | |
| coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`) | |
| will have the domain :ref:`QQ_I`. | |
| >>> from sympy import Poly, Symbol, I | |
| >>> x = Symbol('x') | |
| >>> p = Poly(x**2 + I/2) | |
| >>> p | |
| Poly(x**2 + I/2, x, domain='QQ_I') | |
| >>> p.domain | |
| QQ_I | |
| The polys option ``gaussian=True`` can be used to specify that the domain | |
| should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are | |
| all integers. | |
| >>> Poly(x**2) | |
| Poly(x**2, x, domain='ZZ') | |
| >>> Poly(x**2 + I) | |
| Poly(x**2 + I, x, domain='ZZ_I') | |
| >>> Poly(x**2/2) | |
| Poly(1/2*x**2, x, domain='QQ') | |
| >>> Poly(x**2, gaussian=True) | |
| Poly(x**2, x, domain='QQ_I') | |
| >>> Poly(x**2 + I, gaussian=True) | |
| Poly(x**2 + I, x, domain='QQ_I') | |
| >>> Poly(x**2/2, gaussian=True) | |
| Poly(1/2*x**2, x, domain='QQ_I') | |
| The :ref:`QQ_I` domain can be used to factorise polynomials that are | |
| reducible over the Gaussian rationals. | |
| >>> from sympy import factor, QQ_I | |
| >>> factor(x**2/4 + 1) | |
| (x**2 + 4)/4 | |
| >>> factor(x**2/4 + 1, domain='QQ_I') | |
| (x - 2*I)*(x + 2*I)/4 | |
| >>> factor(x**2/4 + 1, domain=QQ_I) | |
| (x - 2*I)*(x + 2*I)/4 | |
| It is also possible to specify the :ref:`QQ_I` domain explicitly with | |
| polys functions like :py:func:`~.apart`. | |
| >>> from sympy import apart | |
| >>> apart(1/(1 + x**2)) | |
| 1/(x**2 + 1) | |
| >>> apart(1/(1 + x**2), domain=QQ_I) | |
| I/(2*(x + I)) - I/(2*(x - I)) | |
| The corresponding `ring of integers`_ is the domain of the Gaussian | |
| integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_ | |
| of :ref:`ZZ_I`. | |
| >>> from sympy import ZZ_I, QQ_I, QQ | |
| >>> ZZ_I.get_field() | |
| QQ_I | |
| >>> QQ_I.get_ring() | |
| ZZ_I | |
| When using the domain directly :ref:`QQ_I` can be used as a constructor. | |
| >>> QQ_I(3, 4) | |
| (3 + 4*I) | |
| >>> QQ_I(5) | |
| (5 + 0*I) | |
| >>> QQ_I(QQ(2, 3), QQ(4, 5)) | |
| (2/3 + 4/5*I) | |
| The domain elements of :ref:`QQ_I` are instances of | |
| :py:class:`~.GaussianRational` which support the field operations | |
| ``+,-,*,**,/``. | |
| >>> z1 = QQ_I(5, 1) | |
| >>> z2 = QQ_I(2, QQ(1, 2)) | |
| >>> z1 | |
| (5 + 1*I) | |
| >>> z2 | |
| (2 + 1/2*I) | |
| >>> z1 + z2 | |
| (7 + 3/2*I) | |
| >>> z1 * z2 | |
| (19/2 + 9/2*I) | |
| >>> z2 ** 2 | |
| (15/4 + 2*I) | |
| True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and | |
| is always exact. | |
| >>> z1 / z2 | |
| (42/17 + -2/17*I) | |
| >>> QQ_I.exquo(z1, z2) | |
| (42/17 + -2/17*I) | |
| >>> z1 == (z1/z2)*z2 | |
| True | |
| Both floor (``//``) and modulo (``%``) division can be used with | |
| :py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`) | |
| but division is always exact so there is no remainder. | |
| >>> z1 // z2 | |
| (42/17 + -2/17*I) | |
| >>> z1 % z2 | |
| (0 + 0*I) | |
| >>> QQ_I.div(z1, z2) | |
| ((42/17 + -2/17*I), (0 + 0*I)) | |
| >>> (z1//z2)*z2 + z1%z2 == z1 | |
| True | |
| .. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational | |
| """ | |
| dom = QQ | |
| dtype = GaussianRational | |
| zero = dtype(QQ(0), QQ(0)) | |
| one = dtype(QQ(1), QQ(0)) | |
| imag_unit = dtype(QQ(0), QQ(1)) | |
| units = (one, imag_unit, -one, -imag_unit) # powers of i | |
| rep = 'QQ_I' | |
| is_GaussianField = True | |
| is_QQ_I = True | |
| def __init__(self): # override Domain.__init__ | |
| """For constructing QQ_I.""" | |
| def get_ring(self): | |
| """Returns a ring associated with ``self``. """ | |
| return ZZ_I | |
| def get_field(self): | |
| """Returns a field associated with ``self``. """ | |
| return self | |
| def as_AlgebraicField(self): | |
| """Get equivalent domain as an ``AlgebraicField``. """ | |
| return AlgebraicField(self.dom, I) | |
| def numer(self, a): | |
| """Get the numerator of ``a``.""" | |
| ZZ_I = self.get_ring() | |
| return ZZ_I.convert(a * self.denom(a)) | |
| def denom(self, a): | |
| """Get the denominator of ``a``.""" | |
| ZZ = self.dom.get_ring() | |
| QQ = self.dom | |
| ZZ_I = self.get_ring() | |
| denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y)) | |
| return ZZ_I(denom_ZZ, ZZ.zero) | |
| def from_GaussianIntegerRing(K1, a, K0): | |
| """Convert a ZZ_I element to QQ_I.""" | |
| return K1.new(a.x, a.y) | |
| def from_GaussianRationalField(K1, a, K0): | |
| """Convert a QQ_I element to QQ_I.""" | |
| return a | |
| QQ_I = GaussianRational._parent = GaussianRationalField() | |