peacock-data-public-datasets-idc-llm_eval
/
llmeval-env
/lib
/python3.10
/site-packages
/networkx
/utils
/configs.py
import collections | |
import os | |
import typing | |
from dataclasses import dataclass | |
__all__ = ["Config", "config"] | |
class Config: | |
"""The base class for NetworkX configuration. | |
There are two ways to use this to create configurations. The first is to | |
simply pass the initial configuration as keyword arguments to ``Config``: | |
>>> cfg = Config(eggs=1, spam=5) | |
>>> cfg | |
Config(eggs=1, spam=5) | |
The second--and preferred--way is to subclass ``Config`` with docs and annotations. | |
>>> class MyConfig(Config): | |
... '''Breakfast!''' | |
... | |
... eggs: int | |
... spam: int | |
... | |
... def _check_config(self, key, value): | |
... assert isinstance(value, int) and value >= 0 | |
>>> cfg = MyConfig(eggs=1, spam=5) | |
Once defined, config items may be modified, but can't be added or deleted by default. | |
``Config`` is a ``Mapping``, and can get and set configs via attributes or brackets: | |
>>> cfg.eggs = 2 | |
>>> cfg.eggs | |
2 | |
>>> cfg["spam"] = 42 | |
>>> cfg["spam"] | |
42 | |
Subclasses may also define ``_check_config`` (as done in the example above) | |
to ensure the value being assigned is valid: | |
>>> cfg.spam = -1 | |
Traceback (most recent call last): | |
... | |
AssertionError | |
If a more flexible configuration object is needed that allows adding and deleting | |
configurations, then pass ``strict=False`` when defining the subclass: | |
>>> class FlexibleConfig(Config, strict=False): | |
... default_greeting: str = "Hello" | |
>>> flexcfg = FlexibleConfig() | |
>>> flexcfg.name = "Mr. Anderson" | |
>>> flexcfg | |
FlexibleConfig(default_greeting='Hello', name='Mr. Anderson') | |
""" | |
def __init_subclass__(cls, strict=True): | |
cls._strict = strict | |
def __new__(cls, **kwargs): | |
orig_class = cls | |
if cls is Config: | |
# Enable the "simple" case of accepting config definition as keywords | |
cls = type( | |
cls.__name__, | |
(cls,), | |
{"__annotations__": {key: typing.Any for key in kwargs}}, | |
) | |
cls = dataclass( | |
eq=False, | |
repr=cls._strict, | |
slots=cls._strict, | |
kw_only=True, | |
match_args=False, | |
)(cls) | |
if not cls._strict: | |
cls.__repr__ = _flexible_repr | |
cls._orig_class = orig_class # Save original class so we can pickle | |
instance = object.__new__(cls) | |
instance.__init__(**kwargs) | |
return instance | |
def _check_config(self, key, value): | |
"""Check whether config value is valid. This is useful for subclasses.""" | |
# Control behavior of attributes | |
def __dir__(self): | |
return self.__dataclass_fields__.keys() | |
def __setattr__(self, key, value): | |
if self._strict and key not in self.__dataclass_fields__: | |
raise AttributeError(f"Invalid config name: {key!r}") | |
self._check_config(key, value) | |
object.__setattr__(self, key, value) | |
def __delattr__(self, key): | |
if self._strict: | |
raise TypeError( | |
f"Configuration items can't be deleted (can't delete {key!r})." | |
) | |
object.__delattr__(self, key) | |
# Be a `collection.abc.Collection` | |
def __contains__(self, key): | |
return ( | |
key in self.__dataclass_fields__ if self._strict else key in self.__dict__ | |
) | |
def __iter__(self): | |
return iter(self.__dataclass_fields__ if self._strict else self.__dict__) | |
def __len__(self): | |
return len(self.__dataclass_fields__ if self._strict else self.__dict__) | |
def __reversed__(self): | |
return reversed(self.__dataclass_fields__ if self._strict else self.__dict__) | |
# Add dunder methods for `collections.abc.Mapping` | |
def __getitem__(self, key): | |
try: | |
return getattr(self, key) | |
except AttributeError as err: | |
raise KeyError(*err.args) from None | |
def __setitem__(self, key, value): | |
try: | |
self.__setattr__(key, value) | |
except AttributeError as err: | |
raise KeyError(*err.args) from None | |
def __delitem__(self, key): | |
try: | |
self.__delattr__(key) | |
except AttributeError as err: | |
raise KeyError(*err.args) from None | |
_ipython_key_completions_ = __dir__ # config["<TAB> | |
# Go ahead and make it a `collections.abc.Mapping` | |
def get(self, key, default=None): | |
return getattr(self, key, default) | |
def items(self): | |
return collections.abc.ItemsView(self) | |
def keys(self): | |
return collections.abc.KeysView(self) | |
def values(self): | |
return collections.abc.ValuesView(self) | |
# dataclass can define __eq__ for us, but do it here so it works after pickling | |
def __eq__(self, other): | |
if not isinstance(other, Config): | |
return NotImplemented | |
return self._orig_class == other._orig_class and self.items() == other.items() | |
# Make pickle work | |
def __reduce__(self): | |
return self._deserialize, (self._orig_class, dict(self)) | |
def _deserialize(cls, kwargs): | |
return cls(**kwargs) | |
def _flexible_repr(self): | |
return ( | |
f"{self.__class__.__qualname__}(" | |
+ ", ".join(f"{key}={val!r}" for key, val in self.__dict__.items()) | |
+ ")" | |
) | |
# Register, b/c `Mapping.__subclasshook__` returns `NotImplemented` | |
collections.abc.Mapping.register(Config) | |
class NetworkXConfig(Config): | |
"""Configuration for NetworkX that controls behaviors such as how to use backends. | |
Attribute and bracket notation are supported for getting and setting configurations: | |
>>> nx.config.backend_priority == nx.config["backend_priority"] | |
True | |
Parameters | |
---------- | |
backend_priority : list of backend names | |
Enable automatic conversion of graphs to backend graphs for algorithms | |
implemented by the backend. Priority is given to backends listed earlier. | |
Default is empty list. | |
backends : Config mapping of backend names to backend Config | |
The keys of the Config mapping are names of all installed NetworkX backends, | |
and the values are their configurations as Config mappings. | |
cache_converted_graphs : bool | |
If True, then save converted graphs to the cache of the input graph. Graph | |
conversion may occur when automatically using a backend from `backend_priority` | |
or when using the `backend=` keyword argument to a function call. Caching can | |
improve performance by avoiding repeated conversions, but it uses more memory. | |
Care should be taken to not manually mutate a graph that has cached graphs; for | |
example, ``G[u][v][k] = val`` changes the graph, but does not clear the cache. | |
Using methods such as ``G.add_edge(u, v, weight=val)`` will clear the cache to | |
keep it consistent. ``G.__networkx_cache__.clear()`` manually clears the cache. | |
Default is False. | |
Notes | |
----- | |
Environment variables may be used to control some default configurations: | |
- NETWORKX_BACKEND_PRIORITY: set `backend_priority` from comma-separated names. | |
- NETWORKX_CACHE_CONVERTED_GRAPHS: set `cache_converted_graphs` to True if nonempty. | |
This is a global configuration. Use with caution when using from multiple threads. | |
""" | |
backend_priority: list[str] | |
backends: Config | |
cache_converted_graphs: bool | |
def _check_config(self, key, value): | |
from .backends import backends | |
if key == "backend_priority": | |
if not (isinstance(value, list) and all(isinstance(x, str) for x in value)): | |
raise TypeError( | |
f"{key!r} config must be a list of backend names; got {value!r}" | |
) | |
if missing := {x for x in value if x not in backends}: | |
missing = ", ".join(map(repr, sorted(missing))) | |
raise ValueError(f"Unknown backend when setting {key!r}: {missing}") | |
elif key == "backends": | |
if not ( | |
isinstance(value, Config) | |
and all(isinstance(key, str) for key in value) | |
and all(isinstance(val, Config) for val in value.values()) | |
): | |
raise TypeError( | |
f"{key!r} config must be a Config of backend configs; got {value!r}" | |
) | |
if missing := {x for x in value if x not in backends}: | |
missing = ", ".join(map(repr, sorted(missing))) | |
raise ValueError(f"Unknown backend when setting {key!r}: {missing}") | |
elif key == "cache_converted_graphs": | |
if not isinstance(value, bool): | |
raise TypeError(f"{key!r} config must be True or False; got {value!r}") | |
# Backend configuration will be updated in backends.py | |
config = NetworkXConfig( | |
backend_priority=[], | |
backends=Config(), | |
cache_converted_graphs=bool(os.environ.get("NETWORKX_CACHE_CONVERTED_GRAPHS", "")), | |
) | |