peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/chat
/util.py
| # Natural Language Toolkit: Chatbot Utilities | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Authors: Steven Bird <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| # Based on an Eliza implementation by Joe Strout <[email protected]>, | |
| # Jeff Epler <[email protected]> and Jez Higgins <[email protected]>. | |
| import random | |
| import re | |
| reflections = { | |
| "i am": "you are", | |
| "i was": "you were", | |
| "i": "you", | |
| "i'm": "you are", | |
| "i'd": "you would", | |
| "i've": "you have", | |
| "i'll": "you will", | |
| "my": "your", | |
| "you are": "I am", | |
| "you were": "I was", | |
| "you've": "I have", | |
| "you'll": "I will", | |
| "your": "my", | |
| "yours": "mine", | |
| "you": "me", | |
| "me": "you", | |
| } | |
| class Chat: | |
| def __init__(self, pairs, reflections={}): | |
| """ | |
| Initialize the chatbot. Pairs is a list of patterns and responses. Each | |
| pattern is a regular expression matching the user's statement or question, | |
| e.g. r'I like (.*)'. For each such pattern a list of possible responses | |
| is given, e.g. ['Why do you like %1', 'Did you ever dislike %1']. Material | |
| which is matched by parenthesized sections of the patterns (e.g. .*) is mapped to | |
| the numbered positions in the responses, e.g. %1. | |
| :type pairs: list of tuple | |
| :param pairs: The patterns and responses | |
| :type reflections: dict | |
| :param reflections: A mapping between first and second person expressions | |
| :rtype: None | |
| """ | |
| self._pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in pairs] | |
| self._reflections = reflections | |
| self._regex = self._compile_reflections() | |
| def _compile_reflections(self): | |
| sorted_refl = sorted(self._reflections, key=len, reverse=True) | |
| return re.compile( | |
| r"\b({})\b".format("|".join(map(re.escape, sorted_refl))), re.IGNORECASE | |
| ) | |
| def _substitute(self, str): | |
| """ | |
| Substitute words in the string, according to the specified reflections, | |
| e.g. "I'm" -> "you are" | |
| :type str: str | |
| :param str: The string to be mapped | |
| :rtype: str | |
| """ | |
| return self._regex.sub( | |
| lambda mo: self._reflections[mo.string[mo.start() : mo.end()]], str.lower() | |
| ) | |
| def _wildcards(self, response, match): | |
| pos = response.find("%") | |
| while pos >= 0: | |
| num = int(response[pos + 1 : pos + 2]) | |
| response = ( | |
| response[:pos] | |
| + self._substitute(match.group(num)) | |
| + response[pos + 2 :] | |
| ) | |
| pos = response.find("%") | |
| return response | |
| def respond(self, str): | |
| """ | |
| Generate a response to the user input. | |
| :type str: str | |
| :param str: The string to be mapped | |
| :rtype: str | |
| """ | |
| # check each pattern | |
| for (pattern, response) in self._pairs: | |
| match = pattern.match(str) | |
| # did the pattern match? | |
| if match: | |
| resp = random.choice(response) # pick a random response | |
| resp = self._wildcards(resp, match) # process wildcards | |
| # fix munged punctuation at the end | |
| if resp[-2:] == "?.": | |
| resp = resp[:-2] + "." | |
| if resp[-2:] == "??": | |
| resp = resp[:-2] + "?" | |
| return resp | |
| # Hold a conversation with a chatbot | |
| def converse(self, quit="quit"): | |
| user_input = "" | |
| while user_input != quit: | |
| user_input = quit | |
| try: | |
| user_input = input(">") | |
| except EOFError: | |
| print(user_input) | |
| if user_input: | |
| while user_input[-1] in "!.": | |
| user_input = user_input[:-1] | |
| print(self.respond(user_input)) | |