peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/parse
/bllip.py
| # Natural Language Toolkit: Interface to BLLIP Parser | |
| # | |
| # Author: David McClosky <[email protected]> | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| from nltk.parse.api import ParserI | |
| from nltk.tree import Tree | |
| """ | |
| Interface for parsing with BLLIP Parser. Requires the Python | |
| bllipparser module. BllipParser objects can be constructed with the | |
| ``BllipParser.from_unified_model_dir`` class method or manually using the | |
| ``BllipParser`` constructor. The former is generally easier if you have | |
| a BLLIP Parser unified model directory -- a basic model can be obtained | |
| from NLTK's downloader. More unified parsing models can be obtained with | |
| BLLIP Parser's ModelFetcher (run ``python -m bllipparser.ModelFetcher`` | |
| or see docs for ``bllipparser.ModelFetcher.download_and_install_model``). | |
| Basic usage:: | |
| # download and install a basic unified parsing model (Wall Street Journal) | |
| # sudo python -m nltk.downloader bllip_wsj_no_aux | |
| >>> from nltk.data import find | |
| >>> model_dir = find('models/bllip_wsj_no_aux').path | |
| >>> bllip = BllipParser.from_unified_model_dir(model_dir) | |
| # 1-best parsing | |
| >>> sentence1 = 'British left waffles on Falklands .'.split() | |
| >>> top_parse = bllip.parse_one(sentence1) | |
| >>> print(top_parse) | |
| (S1 | |
| (S | |
| (NP (JJ British) (NN left)) | |
| (VP (VBZ waffles) (PP (IN on) (NP (NNP Falklands)))) | |
| (. .))) | |
| # n-best parsing | |
| >>> sentence2 = 'Time flies'.split() | |
| >>> all_parses = bllip.parse_all(sentence2) | |
| >>> print(len(all_parses)) | |
| 50 | |
| >>> print(all_parses[0]) | |
| (S1 (S (NP (NNP Time)) (VP (VBZ flies)))) | |
| # incorporating external tagging constraints (None means unconstrained tag) | |
| >>> constrained1 = bllip.tagged_parse([('Time', 'VB'), ('flies', 'NNS')]) | |
| >>> print(next(constrained1)) | |
| (S1 (NP (VB Time) (NNS flies))) | |
| >>> constrained2 = bllip.tagged_parse([('Time', 'NN'), ('flies', None)]) | |
| >>> print(next(constrained2)) | |
| (S1 (NP (NN Time) (VBZ flies))) | |
| References | |
| ---------- | |
| - Charniak, Eugene. "A maximum-entropy-inspired parser." Proceedings of | |
| the 1st North American chapter of the Association for Computational | |
| Linguistics conference. Association for Computational Linguistics, | |
| 2000. | |
| - Charniak, Eugene, and Mark Johnson. "Coarse-to-fine n-best parsing | |
| and MaxEnt discriminative reranking." Proceedings of the 43rd Annual | |
| Meeting on Association for Computational Linguistics. Association | |
| for Computational Linguistics, 2005. | |
| Known issues | |
| ------------ | |
| Note that BLLIP Parser is not currently threadsafe. Since this module | |
| uses a SWIG interface, it is potentially unsafe to create multiple | |
| ``BllipParser`` objects in the same process. BLLIP Parser currently | |
| has issues with non-ASCII text and will raise an error if given any. | |
| See https://pypi.python.org/pypi/bllipparser/ for more information | |
| on BLLIP Parser's Python interface. | |
| """ | |
| __all__ = ["BllipParser"] | |
| # this block allows this module to be imported even if bllipparser isn't | |
| # available | |
| try: | |
| from bllipparser import RerankingParser | |
| from bllipparser.RerankingParser import get_unified_model_parameters | |
| def _ensure_bllip_import_or_error(): | |
| pass | |
| except ImportError as ie: | |
| def _ensure_bllip_import_or_error(ie=ie): | |
| raise ImportError("Couldn't import bllipparser module: %s" % ie) | |
| def _ensure_ascii(words): | |
| try: | |
| for i, word in enumerate(words): | |
| word.encode("ascii") | |
| except UnicodeEncodeError as e: | |
| raise ValueError( | |
| f"Token {i} ({word!r}) is non-ASCII. BLLIP Parser " | |
| "currently doesn't support non-ASCII inputs." | |
| ) from e | |
| def _scored_parse_to_nltk_tree(scored_parse): | |
| return Tree.fromstring(str(scored_parse.ptb_parse)) | |
| class BllipParser(ParserI): | |
| """ | |
| Interface for parsing with BLLIP Parser. BllipParser objects can be | |
| constructed with the ``BllipParser.from_unified_model_dir`` class | |
| method or manually using the ``BllipParser`` constructor. | |
| """ | |
| def __init__( | |
| self, | |
| parser_model=None, | |
| reranker_features=None, | |
| reranker_weights=None, | |
| parser_options=None, | |
| reranker_options=None, | |
| ): | |
| """ | |
| Load a BLLIP Parser model from scratch. You'll typically want to | |
| use the ``from_unified_model_dir()`` class method to construct | |
| this object. | |
| :param parser_model: Path to parser model directory | |
| :type parser_model: str | |
| :param reranker_features: Path the reranker model's features file | |
| :type reranker_features: str | |
| :param reranker_weights: Path the reranker model's weights file | |
| :type reranker_weights: str | |
| :param parser_options: optional dictionary of parser options, see | |
| ``bllipparser.RerankingParser.RerankingParser.load_parser_options()`` | |
| for more information. | |
| :type parser_options: dict(str) | |
| :param reranker_options: optional | |
| dictionary of reranker options, see | |
| ``bllipparser.RerankingParser.RerankingParser.load_reranker_model()`` | |
| for more information. | |
| :type reranker_options: dict(str) | |
| """ | |
| _ensure_bllip_import_or_error() | |
| parser_options = parser_options or {} | |
| reranker_options = reranker_options or {} | |
| self.rrp = RerankingParser() | |
| self.rrp.load_parser_model(parser_model, **parser_options) | |
| if reranker_features and reranker_weights: | |
| self.rrp.load_reranker_model( | |
| features_filename=reranker_features, | |
| weights_filename=reranker_weights, | |
| **reranker_options, | |
| ) | |
| def parse(self, sentence): | |
| """ | |
| Use BLLIP Parser to parse a sentence. Takes a sentence as a list | |
| of words; it will be automatically tagged with this BLLIP Parser | |
| instance's tagger. | |
| :return: An iterator that generates parse trees for the sentence | |
| from most likely to least likely. | |
| :param sentence: The sentence to be parsed | |
| :type sentence: list(str) | |
| :rtype: iter(Tree) | |
| """ | |
| _ensure_ascii(sentence) | |
| nbest_list = self.rrp.parse(sentence) | |
| for scored_parse in nbest_list: | |
| yield _scored_parse_to_nltk_tree(scored_parse) | |
| def tagged_parse(self, word_and_tag_pairs): | |
| """ | |
| Use BLLIP to parse a sentence. Takes a sentence as a list of | |
| (word, tag) tuples; the sentence must have already been tokenized | |
| and tagged. BLLIP will attempt to use the tags provided but may | |
| use others if it can't come up with a complete parse subject | |
| to those constraints. You may also specify a tag as ``None`` | |
| to leave a token's tag unconstrained. | |
| :return: An iterator that generates parse trees for the sentence | |
| from most likely to least likely. | |
| :param sentence: Input sentence to parse as (word, tag) pairs | |
| :type sentence: list(tuple(str, str)) | |
| :rtype: iter(Tree) | |
| """ | |
| words = [] | |
| tag_map = {} | |
| for i, (word, tag) in enumerate(word_and_tag_pairs): | |
| words.append(word) | |
| if tag is not None: | |
| tag_map[i] = tag | |
| _ensure_ascii(words) | |
| nbest_list = self.rrp.parse_tagged(words, tag_map) | |
| for scored_parse in nbest_list: | |
| yield _scored_parse_to_nltk_tree(scored_parse) | |
| def from_unified_model_dir( | |
| cls, model_dir, parser_options=None, reranker_options=None | |
| ): | |
| """ | |
| Create a ``BllipParser`` object from a unified parsing model | |
| directory. Unified parsing model directories are a standardized | |
| way of storing BLLIP parser and reranker models together on disk. | |
| See ``bllipparser.RerankingParser.get_unified_model_parameters()`` | |
| for more information about unified model directories. | |
| :return: A ``BllipParser`` object using the parser and reranker | |
| models in the model directory. | |
| :param model_dir: Path to the unified model directory. | |
| :type model_dir: str | |
| :param parser_options: optional dictionary of parser options, see | |
| ``bllipparser.RerankingParser.RerankingParser.load_parser_options()`` | |
| for more information. | |
| :type parser_options: dict(str) | |
| :param reranker_options: optional dictionary of reranker options, see | |
| ``bllipparser.RerankingParser.RerankingParser.load_reranker_model()`` | |
| for more information. | |
| :type reranker_options: dict(str) | |
| :rtype: BllipParser | |
| """ | |
| ( | |
| parser_model_dir, | |
| reranker_features_filename, | |
| reranker_weights_filename, | |
| ) = get_unified_model_parameters(model_dir) | |
| return cls( | |
| parser_model_dir, | |
| reranker_features_filename, | |
| reranker_weights_filename, | |
| parser_options, | |
| reranker_options, | |
| ) | |
| def demo(): | |
| """This assumes the Python module bllipparser is installed.""" | |
| # download and install a basic unified parsing model (Wall Street Journal) | |
| # sudo python -m nltk.downloader bllip_wsj_no_aux | |
| from nltk.data import find | |
| model_dir = find("models/bllip_wsj_no_aux").path | |
| print("Loading BLLIP Parsing models...") | |
| # the easiest way to get started is to use a unified model | |
| bllip = BllipParser.from_unified_model_dir(model_dir) | |
| print("Done.") | |
| sentence1 = "British left waffles on Falklands .".split() | |
| sentence2 = "I saw the man with the telescope .".split() | |
| # this sentence is known to fail under the WSJ parsing model | |
| fail1 = "# ! ? : -".split() | |
| for sentence in (sentence1, sentence2, fail1): | |
| print("Sentence: %r" % " ".join(sentence)) | |
| try: | |
| tree = next(bllip.parse(sentence)) | |
| print(tree) | |
| except StopIteration: | |
| print("(parse failed)") | |
| # n-best parsing demo | |
| for i, parse in enumerate(bllip.parse(sentence1)): | |
| print("parse %d:\n%s" % (i, parse)) | |
| # using external POS tag constraints | |
| print( | |
| "forcing 'tree' to be 'NN':", | |
| next(bllip.tagged_parse([("A", None), ("tree", "NN")])), | |
| ) | |
| print( | |
| "forcing 'A' to be 'DT' and 'tree' to be 'NNP':", | |
| next(bllip.tagged_parse([("A", "DT"), ("tree", "NNP")])), | |
| ) | |
| # constraints don't have to make sense... (though on more complicated | |
| # sentences, they may cause the parse to fail) | |
| print( | |
| "forcing 'A' to be 'NNP':", | |
| next(bllip.tagged_parse([("A", "NNP"), ("tree", None)])), | |
| ) | |