peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/parse
/malt.py
| # Natural Language Toolkit: Interface to MaltParser | |
| # | |
| # Author: Dan Garrette <[email protected]> | |
| # Contributor: Liling Tan, Mustufain, osamamukhtar11 | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import inspect | |
| import os | |
| import subprocess | |
| import sys | |
| import tempfile | |
| from nltk.data import ZipFilePathPointer | |
| from nltk.internals import find_dir, find_file, find_jars_within_path | |
| from nltk.parse.api import ParserI | |
| from nltk.parse.dependencygraph import DependencyGraph | |
| from nltk.parse.util import taggedsents_to_conll | |
| def malt_regex_tagger(): | |
| from nltk.tag import RegexpTagger | |
| _tagger = RegexpTagger( | |
| [ | |
| (r"\.$", "."), | |
| (r"\,$", ","), | |
| (r"\?$", "?"), # fullstop, comma, Qmark | |
| (r"\($", "("), | |
| (r"\)$", ")"), # round brackets | |
| (r"\[$", "["), | |
| (r"\]$", "]"), # square brackets | |
| (r"^-?[0-9]+(\.[0-9]+)?$", "CD"), # cardinal numbers | |
| (r"(The|the|A|a|An|an)$", "DT"), # articles | |
| (r"(He|he|She|she|It|it|I|me|Me|You|you)$", "PRP"), # pronouns | |
| (r"(His|his|Her|her|Its|its)$", "PRP$"), # possessive | |
| (r"(my|Your|your|Yours|yours)$", "PRP$"), # possessive | |
| (r"(on|On|in|In|at|At|since|Since)$", "IN"), # time prepopsitions | |
| (r"(for|For|ago|Ago|before|Before)$", "IN"), # time prepopsitions | |
| (r"(till|Till|until|Until)$", "IN"), # time prepopsitions | |
| (r"(by|By|beside|Beside)$", "IN"), # space prepopsitions | |
| (r"(under|Under|below|Below)$", "IN"), # space prepopsitions | |
| (r"(over|Over|above|Above)$", "IN"), # space prepopsitions | |
| (r"(across|Across|through|Through)$", "IN"), # space prepopsitions | |
| (r"(into|Into|towards|Towards)$", "IN"), # space prepopsitions | |
| (r"(onto|Onto|from|From)$", "IN"), # space prepopsitions | |
| (r".*able$", "JJ"), # adjectives | |
| (r".*ness$", "NN"), # nouns formed from adjectives | |
| (r".*ly$", "RB"), # adverbs | |
| (r".*s$", "NNS"), # plural nouns | |
| (r".*ing$", "VBG"), # gerunds | |
| (r".*ed$", "VBD"), # past tense verbs | |
| (r".*", "NN"), # nouns (default) | |
| ] | |
| ) | |
| return _tagger.tag | |
| def find_maltparser(parser_dirname): | |
| """ | |
| A module to find MaltParser .jar file and its dependencies. | |
| """ | |
| if os.path.exists(parser_dirname): # If a full path is given. | |
| _malt_dir = parser_dirname | |
| else: # Try to find path to maltparser directory in environment variables. | |
| _malt_dir = find_dir(parser_dirname, env_vars=("MALT_PARSER",)) | |
| # Checks that that the found directory contains all the necessary .jar | |
| malt_dependencies = ["", "", ""] | |
| _malt_jars = set(find_jars_within_path(_malt_dir)) | |
| _jars = {os.path.split(jar)[1] for jar in _malt_jars} | |
| malt_dependencies = {"log4j.jar", "libsvm.jar", "liblinear-1.8.jar"} | |
| assert malt_dependencies.issubset(_jars) | |
| assert any( | |
| filter(lambda i: i.startswith("maltparser-") and i.endswith(".jar"), _jars) | |
| ) | |
| return list(_malt_jars) | |
| def find_malt_model(model_filename): | |
| """ | |
| A module to find pre-trained MaltParser model. | |
| """ | |
| if model_filename is None: | |
| return "malt_temp.mco" | |
| elif os.path.exists(model_filename): # If a full path is given. | |
| return model_filename | |
| else: # Try to find path to malt model in environment variables. | |
| return find_file(model_filename, env_vars=("MALT_MODEL",), verbose=False) | |
| class MaltParser(ParserI): | |
| """ | |
| A class for dependency parsing with MaltParser. The input is the paths to: | |
| - (optionally) a maltparser directory | |
| - (optionally) the path to a pre-trained MaltParser .mco model file | |
| - (optionally) the tagger to use for POS tagging before parsing | |
| - (optionally) additional Java arguments | |
| Example: | |
| >>> from nltk.parse import malt | |
| >>> # With MALT_PARSER and MALT_MODEL environment set. | |
| >>> mp = malt.MaltParser(model_filename='engmalt.linear-1.7.mco') # doctest: +SKIP | |
| >>> mp.parse_one('I shot an elephant in my pajamas .'.split()).tree() # doctest: +SKIP | |
| (shot I (elephant an) (in (pajamas my)) .) | |
| >>> # Without MALT_PARSER and MALT_MODEL environment. | |
| >>> mp = malt.MaltParser('/home/user/maltparser-1.9.2/', '/home/user/engmalt.linear-1.7.mco') # doctest: +SKIP | |
| >>> mp.parse_one('I shot an elephant in my pajamas .'.split()).tree() # doctest: +SKIP | |
| (shot I (elephant an) (in (pajamas my)) .) | |
| """ | |
| def __init__( | |
| self, | |
| parser_dirname="", | |
| model_filename=None, | |
| tagger=None, | |
| additional_java_args=None, | |
| ): | |
| """ | |
| An interface for parsing with the Malt Parser. | |
| :param parser_dirname: The path to the maltparser directory that | |
| contains the maltparser-1.x.jar | |
| :type parser_dirname: str | |
| :param model_filename: The name of the pre-trained model with .mco file | |
| extension. If provided, training will not be required. | |
| (see http://www.maltparser.org/mco/mco.html and | |
| see http://www.patful.com/chalk/node/185) | |
| :type model_filename: str | |
| :param tagger: The tagger used to POS tag the raw string before | |
| formatting to CONLL format. It should behave like `nltk.pos_tag` | |
| :type tagger: function | |
| :param additional_java_args: This is the additional Java arguments that | |
| one can use when calling Maltparser, usually this is the heapsize | |
| limits, e.g. `additional_java_args=['-Xmx1024m']` | |
| (see https://goo.gl/mpDBvQ) | |
| :type additional_java_args: list | |
| """ | |
| # Find all the necessary jar files for MaltParser. | |
| self.malt_jars = find_maltparser(parser_dirname) | |
| # Initialize additional java arguments. | |
| self.additional_java_args = ( | |
| additional_java_args if additional_java_args is not None else [] | |
| ) | |
| # Initialize model. | |
| self.model = find_malt_model(model_filename) | |
| self._trained = self.model != "malt_temp.mco" | |
| # Set the working_dir parameters i.e. `-w` from MaltParser's option. | |
| self.working_dir = tempfile.gettempdir() | |
| # Initialize POS tagger. | |
| self.tagger = tagger if tagger is not None else malt_regex_tagger() | |
| def parse_tagged_sents(self, sentences, verbose=False, top_relation_label="null"): | |
| """ | |
| Use MaltParser to parse multiple POS tagged sentences. Takes multiple | |
| sentences where each sentence is a list of (word, tag) tuples. | |
| The sentences must have already been tokenized and tagged. | |
| :param sentences: Input sentences to parse | |
| :type sentence: list(list(tuple(str, str))) | |
| :return: iter(iter(``DependencyGraph``)) the dependency graph | |
| representation of each sentence | |
| """ | |
| if not self._trained: | |
| raise Exception("Parser has not been trained. Call train() first.") | |
| with tempfile.NamedTemporaryFile( | |
| prefix="malt_input.conll.", dir=self.working_dir, mode="w", delete=False | |
| ) as input_file: | |
| with tempfile.NamedTemporaryFile( | |
| prefix="malt_output.conll.", | |
| dir=self.working_dir, | |
| mode="w", | |
| delete=False, | |
| ) as output_file: | |
| # Convert list of sentences to CONLL format. | |
| for line in taggedsents_to_conll(sentences): | |
| input_file.write(str(line)) | |
| input_file.close() | |
| # Generate command to run maltparser. | |
| cmd = self.generate_malt_command( | |
| input_file.name, output_file.name, mode="parse" | |
| ) | |
| # This is a maltparser quirk, it needs to be run | |
| # where the model file is. otherwise it goes into an awkward | |
| # missing .jars or strange -w working_dir problem. | |
| _current_path = os.getcwd() # Remembers the current path. | |
| try: # Change to modelfile path | |
| os.chdir(os.path.split(self.model)[0]) | |
| except: | |
| pass | |
| ret = self._execute(cmd, verbose) # Run command. | |
| os.chdir(_current_path) # Change back to current path. | |
| if ret != 0: | |
| raise Exception( | |
| "MaltParser parsing (%s) failed with exit " | |
| "code %d" % (" ".join(cmd), ret) | |
| ) | |
| # Must return iter(iter(Tree)) | |
| with open(output_file.name) as infile: | |
| for tree_str in infile.read().split("\n\n"): | |
| yield ( | |
| iter( | |
| [ | |
| DependencyGraph( | |
| tree_str, top_relation_label=top_relation_label | |
| ) | |
| ] | |
| ) | |
| ) | |
| os.remove(input_file.name) | |
| os.remove(output_file.name) | |
| def parse_sents(self, sentences, verbose=False, top_relation_label="null"): | |
| """ | |
| Use MaltParser to parse multiple sentences. | |
| Takes a list of sentences, where each sentence is a list of words. | |
| Each sentence will be automatically tagged with this | |
| MaltParser instance's tagger. | |
| :param sentences: Input sentences to parse | |
| :type sentence: list(list(str)) | |
| :return: iter(DependencyGraph) | |
| """ | |
| tagged_sentences = (self.tagger(sentence) for sentence in sentences) | |
| return self.parse_tagged_sents( | |
| tagged_sentences, verbose, top_relation_label=top_relation_label | |
| ) | |
| def generate_malt_command(self, inputfilename, outputfilename=None, mode=None): | |
| """ | |
| This function generates the maltparser command use at the terminal. | |
| :param inputfilename: path to the input file | |
| :type inputfilename: str | |
| :param outputfilename: path to the output file | |
| :type outputfilename: str | |
| """ | |
| cmd = ["java"] | |
| cmd += self.additional_java_args # Adds additional java arguments | |
| # Joins classpaths with ";" if on Windows and on Linux/Mac use ":" | |
| classpaths_separator = ";" if sys.platform.startswith("win") else ":" | |
| cmd += [ | |
| "-cp", | |
| classpaths_separator.join(self.malt_jars), | |
| ] # Adds classpaths for jars | |
| cmd += ["org.maltparser.Malt"] # Adds the main function. | |
| # Adds the model file. | |
| if os.path.exists(self.model): # when parsing | |
| cmd += ["-c", os.path.split(self.model)[-1]] | |
| else: # when learning | |
| cmd += ["-c", self.model] | |
| cmd += ["-i", inputfilename] | |
| if mode == "parse": | |
| cmd += ["-o", outputfilename] | |
| cmd += ["-m", mode] # mode use to generate parses. | |
| return cmd | |
| def _execute(cmd, verbose=False): | |
| output = None if verbose else subprocess.PIPE | |
| p = subprocess.Popen(cmd, stdout=output, stderr=output) | |
| return p.wait() | |
| def train(self, depgraphs, verbose=False): | |
| """ | |
| Train MaltParser from a list of ``DependencyGraph`` objects | |
| :param depgraphs: list of ``DependencyGraph`` objects for training input data | |
| :type depgraphs: DependencyGraph | |
| """ | |
| # Write the conll_str to malt_train.conll file in /tmp/ | |
| with tempfile.NamedTemporaryFile( | |
| prefix="malt_train.conll.", dir=self.working_dir, mode="w", delete=False | |
| ) as input_file: | |
| input_str = "\n".join(dg.to_conll(10) for dg in depgraphs) | |
| input_file.write(str(input_str)) | |
| # Trains the model with the malt_train.conll | |
| self.train_from_file(input_file.name, verbose=verbose) | |
| # Removes the malt_train.conll once training finishes. | |
| os.remove(input_file.name) | |
| def train_from_file(self, conll_file, verbose=False): | |
| """ | |
| Train MaltParser from a file | |
| :param conll_file: str for the filename of the training input data | |
| :type conll_file: str | |
| """ | |
| # If conll_file is a ZipFilePathPointer, | |
| # then we need to do some extra massaging | |
| if isinstance(conll_file, ZipFilePathPointer): | |
| with tempfile.NamedTemporaryFile( | |
| prefix="malt_train.conll.", dir=self.working_dir, mode="w", delete=False | |
| ) as input_file: | |
| with conll_file.open() as conll_input_file: | |
| conll_str = conll_input_file.read() | |
| input_file.write(str(conll_str)) | |
| return self.train_from_file(input_file.name, verbose=verbose) | |
| # Generate command to run maltparser. | |
| cmd = self.generate_malt_command(conll_file, mode="learn") | |
| ret = self._execute(cmd, verbose) | |
| if ret != 0: | |
| raise Exception( | |
| "MaltParser training (%s) failed with exit " | |
| "code %d" % (" ".join(cmd), ret) | |
| ) | |
| self._trained = True | |
| if __name__ == "__main__": | |
| """ | |
| A demonstration function to show how NLTK users can use the malt parser API. | |
| >>> from nltk import pos_tag | |
| >>> assert 'MALT_PARSER' in os.environ, str( | |
| ... "Please set MALT_PARSER in your global environment, e.g.:\n" | |
| ... "$ export MALT_PARSER='/home/user/maltparser-1.9.2/'") | |
| >>> | |
| >>> assert 'MALT_MODEL' in os.environ, str( | |
| ... "Please set MALT_MODEL in your global environment, e.g.:\n" | |
| ... "$ export MALT_MODEL='/home/user/engmalt.linear-1.7.mco'") | |
| >>> | |
| >>> _dg1_str = str("1 John _ NNP _ _ 2 SUBJ _ _\n" | |
| ... "2 sees _ VB _ _ 0 ROOT _ _\n" | |
| ... "3 a _ DT _ _ 4 SPEC _ _\n" | |
| ... "4 dog _ NN _ _ 2 OBJ _ _\n" | |
| ... "5 . _ . _ _ 2 PUNCT _ _\n") | |
| >>> | |
| >>> | |
| >>> _dg2_str = str("1 John _ NNP _ _ 2 SUBJ _ _\n" | |
| ... "2 walks _ VB _ _ 0 ROOT _ _\n" | |
| ... "3 . _ . _ _ 2 PUNCT _ _\n") | |
| >>> dg1 = DependencyGraph(_dg1_str) | |
| >>> dg2 = DependencyGraph(_dg2_str) | |
| >>> # Initialize a MaltParser object | |
| >>> mp = MaltParser() | |
| >>> | |
| >>> # Trains a model. | |
| >>> mp.train([dg1,dg2], verbose=False) | |
| >>> sent1 = ['John','sees','Mary', '.'] | |
| >>> sent2 = ['John', 'walks', 'a', 'dog', '.'] | |
| >>> | |
| >>> # Parse a single sentence. | |
| >>> parsed_sent1 = mp.parse_one(sent1) | |
| >>> parsed_sent2 = mp.parse_one(sent2) | |
| >>> print(parsed_sent1.tree()) | |
| (sees John Mary .) | |
| >>> print(parsed_sent2.tree()) | |
| (walks John (dog a) .) | |
| >>> | |
| >>> # Parsing multiple sentences. | |
| >>> sentences = [sent1,sent2] | |
| >>> parsed_sents = mp.parse_sents(sentences) | |
| >>> print(next(next(parsed_sents)).tree()) | |
| (sees John Mary .) | |
| >>> print(next(next(parsed_sents)).tree()) | |
| (walks John (dog a) .) | |
| >>> | |
| >>> # Initialize a MaltParser object with an English pre-trained model. | |
| >>> parser_dirname = 'maltparser-1.9.2' | |
| >>> model_name = 'engmalt.linear-1.7.mco' | |
| >>> mp = MaltParser(parser_dirname=parser_dirname, model_filename=model_name, tagger=pos_tag) | |
| >>> sent1 = 'I shot an elephant in my pajamas .'.split() | |
| >>> sent2 = 'Time flies like banana .'.split() | |
| >>> # Parse a single sentence. | |
| >>> print(mp.parse_one(sent1).tree()) | |
| (shot I (elephant an) (in (pajamas my)) .) | |
| # Parsing multiple sentences | |
| >>> sentences = [sent1,sent2] | |
| >>> parsed_sents = mp.parse_sents(sentences) | |
| >>> print(next(next(parsed_sents)).tree()) | |
| (shot I (elephant an) (in (pajamas my)) .) | |
| >>> print(next(next(parsed_sents)).tree()) | |
| (flies Time (like banana) .) | |
| """ | |
| import doctest | |
| doctest.testmod() | |