peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/parse
/transitionparser.py
| # Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers | |
| # | |
| # Author: Long Duong <[email protected]> | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import pickle | |
| import tempfile | |
| from copy import deepcopy | |
| from operator import itemgetter | |
| from os import remove | |
| try: | |
| from numpy import array | |
| from scipy import sparse | |
| from sklearn import svm | |
| from sklearn.datasets import load_svmlight_file | |
| except ImportError: | |
| pass | |
| from nltk.parse import DependencyEvaluator, DependencyGraph, ParserI | |
| class Configuration: | |
| """ | |
| Class for holding configuration which is the partial analysis of the input sentence. | |
| The transition based parser aims at finding set of operators that transfer the initial | |
| configuration to the terminal configuration. | |
| The configuration includes: | |
| - Stack: for storing partially proceeded words | |
| - Buffer: for storing remaining input words | |
| - Set of arcs: for storing partially built dependency tree | |
| This class also provides a method to represent a configuration as list of features. | |
| """ | |
| def __init__(self, dep_graph): | |
| """ | |
| :param dep_graph: the representation of an input in the form of dependency graph. | |
| :type dep_graph: DependencyGraph where the dependencies are not specified. | |
| """ | |
| # dep_graph.nodes contain list of token for a sentence | |
| self.stack = [0] # The root element | |
| self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer | |
| self.arcs = [] # empty set of arc | |
| self._tokens = dep_graph.nodes | |
| self._max_address = len(self.buffer) | |
| def __str__(self): | |
| return ( | |
| "Stack : " | |
| + str(self.stack) | |
| + " Buffer : " | |
| + str(self.buffer) | |
| + " Arcs : " | |
| + str(self.arcs) | |
| ) | |
| def _check_informative(self, feat, flag=False): | |
| """ | |
| Check whether a feature is informative | |
| The flag control whether "_" is informative or not | |
| """ | |
| if feat is None: | |
| return False | |
| if feat == "": | |
| return False | |
| if flag is False: | |
| if feat == "_": | |
| return False | |
| return True | |
| def extract_features(self): | |
| """ | |
| Extract the set of features for the current configuration. Implement standard features as describe in | |
| Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre. | |
| Please note that these features are very basic. | |
| :return: list(str) | |
| """ | |
| result = [] | |
| # Todo : can come up with more complicated features set for better | |
| # performance. | |
| if len(self.stack) > 0: | |
| # Stack 0 | |
| stack_idx0 = self.stack[len(self.stack) - 1] | |
| token = self._tokens[stack_idx0] | |
| if self._check_informative(token["word"], True): | |
| result.append("STK_0_FORM_" + token["word"]) | |
| if "lemma" in token and self._check_informative(token["lemma"]): | |
| result.append("STK_0_LEMMA_" + token["lemma"]) | |
| if self._check_informative(token["tag"]): | |
| result.append("STK_0_POS_" + token["tag"]) | |
| if "feats" in token and self._check_informative(token["feats"]): | |
| feats = token["feats"].split("|") | |
| for feat in feats: | |
| result.append("STK_0_FEATS_" + feat) | |
| # Stack 1 | |
| if len(self.stack) > 1: | |
| stack_idx1 = self.stack[len(self.stack) - 2] | |
| token = self._tokens[stack_idx1] | |
| if self._check_informative(token["tag"]): | |
| result.append("STK_1_POS_" + token["tag"]) | |
| # Left most, right most dependency of stack[0] | |
| left_most = 1000000 | |
| right_most = -1 | |
| dep_left_most = "" | |
| dep_right_most = "" | |
| for (wi, r, wj) in self.arcs: | |
| if wi == stack_idx0: | |
| if (wj > wi) and (wj > right_most): | |
| right_most = wj | |
| dep_right_most = r | |
| if (wj < wi) and (wj < left_most): | |
| left_most = wj | |
| dep_left_most = r | |
| if self._check_informative(dep_left_most): | |
| result.append("STK_0_LDEP_" + dep_left_most) | |
| if self._check_informative(dep_right_most): | |
| result.append("STK_0_RDEP_" + dep_right_most) | |
| # Check Buffered 0 | |
| if len(self.buffer) > 0: | |
| # Buffer 0 | |
| buffer_idx0 = self.buffer[0] | |
| token = self._tokens[buffer_idx0] | |
| if self._check_informative(token["word"], True): | |
| result.append("BUF_0_FORM_" + token["word"]) | |
| if "lemma" in token and self._check_informative(token["lemma"]): | |
| result.append("BUF_0_LEMMA_" + token["lemma"]) | |
| if self._check_informative(token["tag"]): | |
| result.append("BUF_0_POS_" + token["tag"]) | |
| if "feats" in token and self._check_informative(token["feats"]): | |
| feats = token["feats"].split("|") | |
| for feat in feats: | |
| result.append("BUF_0_FEATS_" + feat) | |
| # Buffer 1 | |
| if len(self.buffer) > 1: | |
| buffer_idx1 = self.buffer[1] | |
| token = self._tokens[buffer_idx1] | |
| if self._check_informative(token["word"], True): | |
| result.append("BUF_1_FORM_" + token["word"]) | |
| if self._check_informative(token["tag"]): | |
| result.append("BUF_1_POS_" + token["tag"]) | |
| if len(self.buffer) > 2: | |
| buffer_idx2 = self.buffer[2] | |
| token = self._tokens[buffer_idx2] | |
| if self._check_informative(token["tag"]): | |
| result.append("BUF_2_POS_" + token["tag"]) | |
| if len(self.buffer) > 3: | |
| buffer_idx3 = self.buffer[3] | |
| token = self._tokens[buffer_idx3] | |
| if self._check_informative(token["tag"]): | |
| result.append("BUF_3_POS_" + token["tag"]) | |
| # Left most, right most dependency of stack[0] | |
| left_most = 1000000 | |
| right_most = -1 | |
| dep_left_most = "" | |
| dep_right_most = "" | |
| for (wi, r, wj) in self.arcs: | |
| if wi == buffer_idx0: | |
| if (wj > wi) and (wj > right_most): | |
| right_most = wj | |
| dep_right_most = r | |
| if (wj < wi) and (wj < left_most): | |
| left_most = wj | |
| dep_left_most = r | |
| if self._check_informative(dep_left_most): | |
| result.append("BUF_0_LDEP_" + dep_left_most) | |
| if self._check_informative(dep_right_most): | |
| result.append("BUF_0_RDEP_" + dep_right_most) | |
| return result | |
| class Transition: | |
| """ | |
| This class defines a set of transition which is applied to a configuration to get another configuration | |
| Note that for different parsing algorithm, the transition is different. | |
| """ | |
| # Define set of transitions | |
| LEFT_ARC = "LEFTARC" | |
| RIGHT_ARC = "RIGHTARC" | |
| SHIFT = "SHIFT" | |
| REDUCE = "REDUCE" | |
| def __init__(self, alg_option): | |
| """ | |
| :param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm | |
| :type alg_option: str | |
| """ | |
| self._algo = alg_option | |
| if alg_option not in [ | |
| TransitionParser.ARC_STANDARD, | |
| TransitionParser.ARC_EAGER, | |
| ]: | |
| raise ValueError( | |
| " Currently we only support %s and %s " | |
| % (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER) | |
| ) | |
| def left_arc(self, conf, relation): | |
| """ | |
| Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager | |
| :param configuration: is the current configuration | |
| :return: A new configuration or -1 if the pre-condition is not satisfied | |
| """ | |
| if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): | |
| return -1 | |
| if conf.buffer[0] == 0: | |
| # here is the Root element | |
| return -1 | |
| idx_wi = conf.stack[len(conf.stack) - 1] | |
| flag = True | |
| if self._algo == TransitionParser.ARC_EAGER: | |
| for (idx_parent, r, idx_child) in conf.arcs: | |
| if idx_child == idx_wi: | |
| flag = False | |
| if flag: | |
| conf.stack.pop() | |
| idx_wj = conf.buffer[0] | |
| conf.arcs.append((idx_wj, relation, idx_wi)) | |
| else: | |
| return -1 | |
| def right_arc(self, conf, relation): | |
| """ | |
| Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager | |
| :param configuration: is the current configuration | |
| :return: A new configuration or -1 if the pre-condition is not satisfied | |
| """ | |
| if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0): | |
| return -1 | |
| if self._algo == TransitionParser.ARC_STANDARD: | |
| idx_wi = conf.stack.pop() | |
| idx_wj = conf.buffer[0] | |
| conf.buffer[0] = idx_wi | |
| conf.arcs.append((idx_wi, relation, idx_wj)) | |
| else: # arc-eager | |
| idx_wi = conf.stack[len(conf.stack) - 1] | |
| idx_wj = conf.buffer.pop(0) | |
| conf.stack.append(idx_wj) | |
| conf.arcs.append((idx_wi, relation, idx_wj)) | |
| def reduce(self, conf): | |
| """ | |
| Note that the algorithm for reduce is only available for arc-eager | |
| :param configuration: is the current configuration | |
| :return: A new configuration or -1 if the pre-condition is not satisfied | |
| """ | |
| if self._algo != TransitionParser.ARC_EAGER: | |
| return -1 | |
| if len(conf.stack) <= 0: | |
| return -1 | |
| idx_wi = conf.stack[len(conf.stack) - 1] | |
| flag = False | |
| for (idx_parent, r, idx_child) in conf.arcs: | |
| if idx_child == idx_wi: | |
| flag = True | |
| if flag: | |
| conf.stack.pop() # reduce it | |
| else: | |
| return -1 | |
| def shift(self, conf): | |
| """ | |
| Note that the algorithm for shift is the SAME for arc-standard and arc-eager | |
| :param configuration: is the current configuration | |
| :return: A new configuration or -1 if the pre-condition is not satisfied | |
| """ | |
| if len(conf.buffer) <= 0: | |
| return -1 | |
| idx_wi = conf.buffer.pop(0) | |
| conf.stack.append(idx_wi) | |
| class TransitionParser(ParserI): | |
| """ | |
| Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager" | |
| """ | |
| ARC_STANDARD = "arc-standard" | |
| ARC_EAGER = "arc-eager" | |
| def __init__(self, algorithm): | |
| """ | |
| :param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm | |
| :type algorithm: str | |
| """ | |
| if not (algorithm in [self.ARC_STANDARD, self.ARC_EAGER]): | |
| raise ValueError( | |
| " Currently we only support %s and %s " | |
| % (self.ARC_STANDARD, self.ARC_EAGER) | |
| ) | |
| self._algorithm = algorithm | |
| self._dictionary = {} | |
| self._transition = {} | |
| self._match_transition = {} | |
| def _get_dep_relation(self, idx_parent, idx_child, depgraph): | |
| p_node = depgraph.nodes[idx_parent] | |
| c_node = depgraph.nodes[idx_child] | |
| if c_node["word"] is None: | |
| return None # Root word | |
| if c_node["head"] == p_node["address"]: | |
| return c_node["rel"] | |
| else: | |
| return None | |
| def _convert_to_binary_features(self, features): | |
| """ | |
| :param features: list of feature string which is needed to convert to binary features | |
| :type features: list(str) | |
| :return : string of binary features in libsvm format which is 'featureID:value' pairs | |
| """ | |
| unsorted_result = [] | |
| for feature in features: | |
| self._dictionary.setdefault(feature, len(self._dictionary)) | |
| unsorted_result.append(self._dictionary[feature]) | |
| # Default value of each feature is 1.0 | |
| return " ".join( | |
| str(featureID) + ":1.0" for featureID in sorted(unsorted_result) | |
| ) | |
| def _is_projective(self, depgraph): | |
| arc_list = [] | |
| for key in depgraph.nodes: | |
| node = depgraph.nodes[key] | |
| if "head" in node: | |
| childIdx = node["address"] | |
| parentIdx = node["head"] | |
| if parentIdx is not None: | |
| arc_list.append((parentIdx, childIdx)) | |
| for (parentIdx, childIdx) in arc_list: | |
| # Ensure that childIdx < parentIdx | |
| if childIdx > parentIdx: | |
| temp = childIdx | |
| childIdx = parentIdx | |
| parentIdx = temp | |
| for k in range(childIdx + 1, parentIdx): | |
| for m in range(len(depgraph.nodes)): | |
| if (m < childIdx) or (m > parentIdx): | |
| if (k, m) in arc_list: | |
| return False | |
| if (m, k) in arc_list: | |
| return False | |
| return True | |
| def _write_to_file(self, key, binary_features, input_file): | |
| """ | |
| write the binary features to input file and update the transition dictionary | |
| """ | |
| self._transition.setdefault(key, len(self._transition) + 1) | |
| self._match_transition[self._transition[key]] = key | |
| input_str = str(self._transition[key]) + " " + binary_features + "\n" | |
| input_file.write(input_str.encode("utf-8")) | |
| def _create_training_examples_arc_std(self, depgraphs, input_file): | |
| """ | |
| Create the training example in the libsvm format and write it to the input_file. | |
| Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009) | |
| """ | |
| operation = Transition(self.ARC_STANDARD) | |
| count_proj = 0 | |
| training_seq = [] | |
| for depgraph in depgraphs: | |
| if not self._is_projective(depgraph): | |
| continue | |
| count_proj += 1 | |
| conf = Configuration(depgraph) | |
| while len(conf.buffer) > 0: | |
| b0 = conf.buffer[0] | |
| features = conf.extract_features() | |
| binary_features = self._convert_to_binary_features(features) | |
| if len(conf.stack) > 0: | |
| s0 = conf.stack[len(conf.stack) - 1] | |
| # Left-arc operation | |
| rel = self._get_dep_relation(b0, s0, depgraph) | |
| if rel is not None: | |
| key = Transition.LEFT_ARC + ":" + rel | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.left_arc(conf, rel) | |
| training_seq.append(key) | |
| continue | |
| # Right-arc operation | |
| rel = self._get_dep_relation(s0, b0, depgraph) | |
| if rel is not None: | |
| precondition = True | |
| # Get the max-index of buffer | |
| maxID = conf._max_address | |
| for w in range(maxID + 1): | |
| if w != b0: | |
| relw = self._get_dep_relation(b0, w, depgraph) | |
| if relw is not None: | |
| if (b0, relw, w) not in conf.arcs: | |
| precondition = False | |
| if precondition: | |
| key = Transition.RIGHT_ARC + ":" + rel | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.right_arc(conf, rel) | |
| training_seq.append(key) | |
| continue | |
| # Shift operation as the default | |
| key = Transition.SHIFT | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.shift(conf) | |
| training_seq.append(key) | |
| print(" Number of training examples : " + str(len(depgraphs))) | |
| print(" Number of valid (projective) examples : " + str(count_proj)) | |
| return training_seq | |
| def _create_training_examples_arc_eager(self, depgraphs, input_file): | |
| """ | |
| Create the training example in the libsvm format and write it to the input_file. | |
| Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre | |
| """ | |
| operation = Transition(self.ARC_EAGER) | |
| countProj = 0 | |
| training_seq = [] | |
| for depgraph in depgraphs: | |
| if not self._is_projective(depgraph): | |
| continue | |
| countProj += 1 | |
| conf = Configuration(depgraph) | |
| while len(conf.buffer) > 0: | |
| b0 = conf.buffer[0] | |
| features = conf.extract_features() | |
| binary_features = self._convert_to_binary_features(features) | |
| if len(conf.stack) > 0: | |
| s0 = conf.stack[len(conf.stack) - 1] | |
| # Left-arc operation | |
| rel = self._get_dep_relation(b0, s0, depgraph) | |
| if rel is not None: | |
| key = Transition.LEFT_ARC + ":" + rel | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.left_arc(conf, rel) | |
| training_seq.append(key) | |
| continue | |
| # Right-arc operation | |
| rel = self._get_dep_relation(s0, b0, depgraph) | |
| if rel is not None: | |
| key = Transition.RIGHT_ARC + ":" + rel | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.right_arc(conf, rel) | |
| training_seq.append(key) | |
| continue | |
| # reduce operation | |
| flag = False | |
| for k in range(s0): | |
| if self._get_dep_relation(k, b0, depgraph) is not None: | |
| flag = True | |
| if self._get_dep_relation(b0, k, depgraph) is not None: | |
| flag = True | |
| if flag: | |
| key = Transition.REDUCE | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.reduce(conf) | |
| training_seq.append(key) | |
| continue | |
| # Shift operation as the default | |
| key = Transition.SHIFT | |
| self._write_to_file(key, binary_features, input_file) | |
| operation.shift(conf) | |
| training_seq.append(key) | |
| print(" Number of training examples : " + str(len(depgraphs))) | |
| print(" Number of valid (projective) examples : " + str(countProj)) | |
| return training_seq | |
| def train(self, depgraphs, modelfile, verbose=True): | |
| """ | |
| :param depgraphs : list of DependencyGraph as the training data | |
| :type depgraphs : DependencyGraph | |
| :param modelfile : file name to save the trained model | |
| :type modelfile : str | |
| """ | |
| try: | |
| input_file = tempfile.NamedTemporaryFile( | |
| prefix="transition_parse.train", dir=tempfile.gettempdir(), delete=False | |
| ) | |
| if self._algorithm == self.ARC_STANDARD: | |
| self._create_training_examples_arc_std(depgraphs, input_file) | |
| else: | |
| self._create_training_examples_arc_eager(depgraphs, input_file) | |
| input_file.close() | |
| # Using the temporary file to train the libsvm classifier | |
| x_train, y_train = load_svmlight_file(input_file.name) | |
| # The parameter is set according to the paper: | |
| # Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre | |
| # Todo : because of probability = True => very slow due to | |
| # cross-validation. Need to improve the speed here | |
| model = svm.SVC( | |
| kernel="poly", | |
| degree=2, | |
| coef0=0, | |
| gamma=0.2, | |
| C=0.5, | |
| verbose=verbose, | |
| probability=True, | |
| ) | |
| model.fit(x_train, y_train) | |
| # Save the model to file name (as pickle) | |
| pickle.dump(model, open(modelfile, "wb")) | |
| finally: | |
| remove(input_file.name) | |
| def parse(self, depgraphs, modelFile): | |
| """ | |
| :param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy | |
| :type depgraphs: list(DependencyGraph) | |
| :param modelfile: the model file | |
| :type modelfile: str | |
| :return: list (DependencyGraph) with the 'head' and 'rel' information | |
| """ | |
| result = [] | |
| # First load the model | |
| model = pickle.load(open(modelFile, "rb")) | |
| operation = Transition(self._algorithm) | |
| for depgraph in depgraphs: | |
| conf = Configuration(depgraph) | |
| while len(conf.buffer) > 0: | |
| features = conf.extract_features() | |
| col = [] | |
| row = [] | |
| data = [] | |
| for feature in features: | |
| if feature in self._dictionary: | |
| col.append(self._dictionary[feature]) | |
| row.append(0) | |
| data.append(1.0) | |
| np_col = array(sorted(col)) # NB : index must be sorted | |
| np_row = array(row) | |
| np_data = array(data) | |
| x_test = sparse.csr_matrix( | |
| (np_data, (np_row, np_col)), shape=(1, len(self._dictionary)) | |
| ) | |
| # It's best to use decision function as follow BUT it's not supported yet for sparse SVM | |
| # Using decision function to build the votes array | |
| # dec_func = model.decision_function(x_test)[0] | |
| # votes = {} | |
| # k = 0 | |
| # for i in range(len(model.classes_)): | |
| # for j in range(i+1, len(model.classes_)): | |
| # #if dec_func[k] > 0: | |
| # votes.setdefault(i,0) | |
| # votes[i] +=1 | |
| # else: | |
| # votes.setdefault(j,0) | |
| # votes[j] +=1 | |
| # k +=1 | |
| # Sort votes according to the values | |
| # sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True) | |
| # We will use predict_proba instead of decision_function | |
| prob_dict = {} | |
| pred_prob = model.predict_proba(x_test)[0] | |
| for i in range(len(pred_prob)): | |
| prob_dict[i] = pred_prob[i] | |
| sorted_Prob = sorted(prob_dict.items(), key=itemgetter(1), reverse=True) | |
| # Note that SHIFT is always a valid operation | |
| for (y_pred_idx, confidence) in sorted_Prob: | |
| # y_pred = model.predict(x_test)[0] | |
| # From the prediction match to the operation | |
| y_pred = model.classes_[y_pred_idx] | |
| if y_pred in self._match_transition: | |
| strTransition = self._match_transition[y_pred] | |
| baseTransition = strTransition.split(":")[0] | |
| if baseTransition == Transition.LEFT_ARC: | |
| if ( | |
| operation.left_arc(conf, strTransition.split(":")[1]) | |
| != -1 | |
| ): | |
| break | |
| elif baseTransition == Transition.RIGHT_ARC: | |
| if ( | |
| operation.right_arc(conf, strTransition.split(":")[1]) | |
| != -1 | |
| ): | |
| break | |
| elif baseTransition == Transition.REDUCE: | |
| if operation.reduce(conf) != -1: | |
| break | |
| elif baseTransition == Transition.SHIFT: | |
| if operation.shift(conf) != -1: | |
| break | |
| else: | |
| raise ValueError( | |
| "The predicted transition is not recognized, expected errors" | |
| ) | |
| # Finish with operations build the dependency graph from Conf.arcs | |
| new_depgraph = deepcopy(depgraph) | |
| for key in new_depgraph.nodes: | |
| node = new_depgraph.nodes[key] | |
| node["rel"] = "" | |
| # With the default, all the token depend on the Root | |
| node["head"] = 0 | |
| for (head, rel, child) in conf.arcs: | |
| c_node = new_depgraph.nodes[child] | |
| c_node["head"] = head | |
| c_node["rel"] = rel | |
| result.append(new_depgraph) | |
| return result | |
| def demo(): | |
| """ | |
| >>> from nltk.parse import DependencyGraph, DependencyEvaluator | |
| >>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition | |
| >>> gold_sent = DependencyGraph(\""" | |
| ... Economic JJ 2 ATT | |
| ... news NN 3 SBJ | |
| ... has VBD 0 ROOT | |
| ... little JJ 5 ATT | |
| ... effect NN 3 OBJ | |
| ... on IN 5 ATT | |
| ... financial JJ 8 ATT | |
| ... markets NNS 6 PC | |
| ... . . 3 PU | |
| ... \""") | |
| >>> conf = Configuration(gold_sent) | |
| ###################### Check the Initial Feature ######################## | |
| >>> print(', '.join(conf.extract_features())) | |
| STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ | |
| ###################### Check The Transition ####################### | |
| Check the Initialized Configuration | |
| >>> print(conf) | |
| Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : [] | |
| A. Do some transition checks for ARC-STANDARD | |
| >>> operation = Transition('arc-standard') | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf, "ATT") | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf,"SBJ") | |
| >>> operation.shift(conf) | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf, "ATT") | |
| >>> operation.shift(conf) | |
| >>> operation.shift(conf) | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf, "ATT") | |
| Middle Configuration and Features Check | |
| >>> print(conf) | |
| Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)] | |
| >>> print(', '.join(conf.extract_features())) | |
| STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT | |
| >>> operation.right_arc(conf, "PC") | |
| >>> operation.right_arc(conf, "ATT") | |
| >>> operation.right_arc(conf, "OBJ") | |
| >>> operation.shift(conf) | |
| >>> operation.right_arc(conf, "PU") | |
| >>> operation.right_arc(conf, "ROOT") | |
| >>> operation.shift(conf) | |
| Terminated Configuration Check | |
| >>> print(conf) | |
| Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)] | |
| B. Do some transition checks for ARC-EAGER | |
| >>> conf = Configuration(gold_sent) | |
| >>> operation = Transition('arc-eager') | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf,'ATT') | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf,'SBJ') | |
| >>> operation.right_arc(conf,'ROOT') | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf,'ATT') | |
| >>> operation.right_arc(conf,'OBJ') | |
| >>> operation.right_arc(conf,'ATT') | |
| >>> operation.shift(conf) | |
| >>> operation.left_arc(conf,'ATT') | |
| >>> operation.right_arc(conf,'PC') | |
| >>> operation.reduce(conf) | |
| >>> operation.reduce(conf) | |
| >>> operation.reduce(conf) | |
| >>> operation.right_arc(conf,'PU') | |
| >>> print(conf) | |
| Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)] | |
| ###################### Check The Training Function ####################### | |
| A. Check the ARC-STANDARD training | |
| >>> import tempfile | |
| >>> import os | |
| >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False) | |
| >>> parser_std = TransitionParser('arc-standard') | |
| >>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file))) | |
| Number of training examples : 1 | |
| Number of valid (projective) examples : 1 | |
| SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT | |
| >>> parser_std.train([gold_sent],'temp.arcstd.model', verbose=False) | |
| Number of training examples : 1 | |
| Number of valid (projective) examples : 1 | |
| >>> input_file.close() | |
| >>> remove(input_file.name) | |
| B. Check the ARC-EAGER training | |
| >>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False) | |
| >>> parser_eager = TransitionParser('arc-eager') | |
| >>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file))) | |
| Number of training examples : 1 | |
| Number of valid (projective) examples : 1 | |
| SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU | |
| >>> parser_eager.train([gold_sent],'temp.arceager.model', verbose=False) | |
| Number of training examples : 1 | |
| Number of valid (projective) examples : 1 | |
| >>> input_file.close() | |
| >>> remove(input_file.name) | |
| ###################### Check The Parsing Function ######################## | |
| A. Check the ARC-STANDARD parser | |
| >>> result = parser_std.parse([gold_sent], 'temp.arcstd.model') | |
| >>> de = DependencyEvaluator(result, [gold_sent]) | |
| >>> de.eval() >= (0, 0) | |
| True | |
| B. Check the ARC-EAGER parser | |
| >>> result = parser_eager.parse([gold_sent], 'temp.arceager.model') | |
| >>> de = DependencyEvaluator(result, [gold_sent]) | |
| >>> de.eval() >= (0, 0) | |
| True | |
| Remove test temporary files | |
| >>> remove('temp.arceager.model') | |
| >>> remove('temp.arcstd.model') | |
| Note that result is very poor because of only one training example. | |
| """ | |