peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/nltk
/parse
/util.py
| # Natural Language Toolkit: Parser Utility Functions | |
| # | |
| # Author: Ewan Klein <[email protected]> | |
| # Tom Aarsen <> | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| Utility functions for parsers. | |
| """ | |
| from nltk.data import load | |
| from nltk.grammar import CFG, PCFG, FeatureGrammar | |
| from nltk.parse.chart import Chart, ChartParser | |
| from nltk.parse.featurechart import FeatureChart, FeatureChartParser | |
| from nltk.parse.pchart import InsideChartParser | |
| def load_parser( | |
| grammar_url, trace=0, parser=None, chart_class=None, beam_size=0, **load_args | |
| ): | |
| """ | |
| Load a grammar from a file, and build a parser based on that grammar. | |
| The parser depends on the grammar format, and might also depend | |
| on properties of the grammar itself. | |
| The following grammar formats are currently supported: | |
| - ``'cfg'`` (CFGs: ``CFG``) | |
| - ``'pcfg'`` (probabilistic CFGs: ``PCFG``) | |
| - ``'fcfg'`` (feature-based CFGs: ``FeatureGrammar``) | |
| :type grammar_url: str | |
| :param grammar_url: A URL specifying where the grammar is located. | |
| The default protocol is ``"nltk:"``, which searches for the file | |
| in the the NLTK data package. | |
| :type trace: int | |
| :param trace: The level of tracing that should be used when | |
| parsing a text. ``0`` will generate no tracing output; | |
| and higher numbers will produce more verbose tracing output. | |
| :param parser: The class used for parsing; should be ``ChartParser`` | |
| or a subclass. | |
| If None, the class depends on the grammar format. | |
| :param chart_class: The class used for storing the chart; | |
| should be ``Chart`` or a subclass. | |
| Only used for CFGs and feature CFGs. | |
| If None, the chart class depends on the grammar format. | |
| :type beam_size: int | |
| :param beam_size: The maximum length for the parser's edge queue. | |
| Only used for probabilistic CFGs. | |
| :param load_args: Keyword parameters used when loading the grammar. | |
| See ``data.load`` for more information. | |
| """ | |
| grammar = load(grammar_url, **load_args) | |
| if not isinstance(grammar, CFG): | |
| raise ValueError("The grammar must be a CFG, " "or a subclass thereof.") | |
| if isinstance(grammar, PCFG): | |
| if parser is None: | |
| parser = InsideChartParser | |
| return parser(grammar, trace=trace, beam_size=beam_size) | |
| elif isinstance(grammar, FeatureGrammar): | |
| if parser is None: | |
| parser = FeatureChartParser | |
| if chart_class is None: | |
| chart_class = FeatureChart | |
| return parser(grammar, trace=trace, chart_class=chart_class) | |
| else: # Plain CFG. | |
| if parser is None: | |
| parser = ChartParser | |
| if chart_class is None: | |
| chart_class = Chart | |
| return parser(grammar, trace=trace, chart_class=chart_class) | |
| def taggedsent_to_conll(sentence): | |
| """ | |
| A module to convert a single POS tagged sentence into CONLL format. | |
| >>> from nltk import word_tokenize, pos_tag | |
| >>> text = "This is a foobar sentence." | |
| >>> for line in taggedsent_to_conll(pos_tag(word_tokenize(text))): # doctest: +NORMALIZE_WHITESPACE | |
| ... print(line, end="") | |
| 1 This _ DT DT _ 0 a _ _ | |
| 2 is _ VBZ VBZ _ 0 a _ _ | |
| 3 a _ DT DT _ 0 a _ _ | |
| 4 foobar _ JJ JJ _ 0 a _ _ | |
| 5 sentence _ NN NN _ 0 a _ _ | |
| 6 . _ . . _ 0 a _ _ | |
| :param sentence: A single input sentence to parse | |
| :type sentence: list(tuple(str, str)) | |
| :rtype: iter(str) | |
| :return: a generator yielding a single sentence in CONLL format. | |
| """ | |
| for (i, (word, tag)) in enumerate(sentence, start=1): | |
| input_str = [str(i), word, "_", tag, tag, "_", "0", "a", "_", "_"] | |
| input_str = "\t".join(input_str) + "\n" | |
| yield input_str | |
| def taggedsents_to_conll(sentences): | |
| """ | |
| A module to convert the a POS tagged document stream | |
| (i.e. list of list of tuples, a list of sentences) and yield lines | |
| in CONLL format. This module yields one line per word and two newlines | |
| for end of sentence. | |
| >>> from nltk import word_tokenize, sent_tokenize, pos_tag | |
| >>> text = "This is a foobar sentence. Is that right?" | |
| >>> sentences = [pos_tag(word_tokenize(sent)) for sent in sent_tokenize(text)] | |
| >>> for line in taggedsents_to_conll(sentences): # doctest: +NORMALIZE_WHITESPACE | |
| ... if line: | |
| ... print(line, end="") | |
| 1 This _ DT DT _ 0 a _ _ | |
| 2 is _ VBZ VBZ _ 0 a _ _ | |
| 3 a _ DT DT _ 0 a _ _ | |
| 4 foobar _ JJ JJ _ 0 a _ _ | |
| 5 sentence _ NN NN _ 0 a _ _ | |
| 6 . _ . . _ 0 a _ _ | |
| <BLANKLINE> | |
| <BLANKLINE> | |
| 1 Is _ VBZ VBZ _ 0 a _ _ | |
| 2 that _ IN IN _ 0 a _ _ | |
| 3 right _ NN NN _ 0 a _ _ | |
| 4 ? _ . . _ 0 a _ _ | |
| <BLANKLINE> | |
| <BLANKLINE> | |
| :param sentences: Input sentences to parse | |
| :type sentence: list(list(tuple(str, str))) | |
| :rtype: iter(str) | |
| :return: a generator yielding sentences in CONLL format. | |
| """ | |
| for sentence in sentences: | |
| yield from taggedsent_to_conll(sentence) | |
| yield "\n\n" | |
| ###################################################################### | |
| # { Test Suites | |
| ###################################################################### | |
| class TestGrammar: | |
| """ | |
| Unit tests for CFG. | |
| """ | |
| def __init__(self, grammar, suite, accept=None, reject=None): | |
| self.test_grammar = grammar | |
| self.cp = load_parser(grammar, trace=0) | |
| self.suite = suite | |
| self._accept = accept | |
| self._reject = reject | |
| def run(self, show_trees=False): | |
| """ | |
| Sentences in the test suite are divided into two classes: | |
| - grammatical (``accept``) and | |
| - ungrammatical (``reject``). | |
| If a sentence should parse according to the grammar, the value of | |
| ``trees`` will be a non-empty list. If a sentence should be rejected | |
| according to the grammar, then the value of ``trees`` will be None. | |
| """ | |
| for test in self.suite: | |
| print(test["doc"] + ":", end=" ") | |
| for key in ["accept", "reject"]: | |
| for sent in test[key]: | |
| tokens = sent.split() | |
| trees = list(self.cp.parse(tokens)) | |
| if show_trees and trees: | |
| print() | |
| print(sent) | |
| for tree in trees: | |
| print(tree) | |
| if key == "accept": | |
| if trees == []: | |
| raise ValueError("Sentence '%s' failed to parse'" % sent) | |
| else: | |
| accepted = True | |
| else: | |
| if trees: | |
| raise ValueError("Sentence '%s' received a parse'" % sent) | |
| else: | |
| rejected = True | |
| if accepted and rejected: | |
| print("All tests passed!") | |
| def extract_test_sentences(string, comment_chars="#%;", encoding=None): | |
| """ | |
| Parses a string with one test sentence per line. | |
| Lines can optionally begin with: | |
| - a bool, saying if the sentence is grammatical or not, or | |
| - an int, giving the number of parse trees is should have, | |
| The result information is followed by a colon, and then the sentence. | |
| Empty lines and lines beginning with a comment char are ignored. | |
| :return: a list of tuple of sentences and expected results, | |
| where a sentence is a list of str, | |
| and a result is None, or bool, or int | |
| :param comment_chars: ``str`` of possible comment characters. | |
| :param encoding: the encoding of the string, if it is binary | |
| """ | |
| if encoding is not None: | |
| string = string.decode(encoding) | |
| sentences = [] | |
| for sentence in string.split("\n"): | |
| if sentence == "" or sentence[0] in comment_chars: | |
| continue | |
| split_info = sentence.split(":", 1) | |
| result = None | |
| if len(split_info) == 2: | |
| if split_info[0] in ["True", "true", "False", "false"]: | |
| result = split_info[0] in ["True", "true"] | |
| sentence = split_info[1] | |
| else: | |
| result = int(split_info[0]) | |
| sentence = split_info[1] | |
| tokens = sentence.split() | |
| if tokens == []: | |
| continue | |
| sentences += [(tokens, result)] | |
| return sentences | |