peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/numpy
/ma
/timer_comparison.py
| import timeit | |
| from functools import reduce | |
| import numpy as np | |
| from numpy import float_ | |
| import numpy.core.fromnumeric as fromnumeric | |
| from numpy.testing import build_err_msg | |
| pi = np.pi | |
| class ModuleTester: | |
| def __init__(self, module): | |
| self.module = module | |
| self.allequal = module.allequal | |
| self.arange = module.arange | |
| self.array = module.array | |
| self.concatenate = module.concatenate | |
| self.count = module.count | |
| self.equal = module.equal | |
| self.filled = module.filled | |
| self.getmask = module.getmask | |
| self.getmaskarray = module.getmaskarray | |
| self.id = id | |
| self.inner = module.inner | |
| self.make_mask = module.make_mask | |
| self.masked = module.masked | |
| self.masked_array = module.masked_array | |
| self.masked_values = module.masked_values | |
| self.mask_or = module.mask_or | |
| self.nomask = module.nomask | |
| self.ones = module.ones | |
| self.outer = module.outer | |
| self.repeat = module.repeat | |
| self.resize = module.resize | |
| self.sort = module.sort | |
| self.take = module.take | |
| self.transpose = module.transpose | |
| self.zeros = module.zeros | |
| self.MaskType = module.MaskType | |
| try: | |
| self.umath = module.umath | |
| except AttributeError: | |
| self.umath = module.core.umath | |
| self.testnames = [] | |
| def assert_array_compare(self, comparison, x, y, err_msg='', header='', | |
| fill_value=True): | |
| """ | |
| Assert that a comparison of two masked arrays is satisfied elementwise. | |
| """ | |
| xf = self.filled(x) | |
| yf = self.filled(y) | |
| m = self.mask_or(self.getmask(x), self.getmask(y)) | |
| x = self.filled(self.masked_array(xf, mask=m), fill_value) | |
| y = self.filled(self.masked_array(yf, mask=m), fill_value) | |
| if (x.dtype.char != "O"): | |
| x = x.astype(float_) | |
| if isinstance(x, np.ndarray) and x.size > 1: | |
| x[np.isnan(x)] = 0 | |
| elif np.isnan(x): | |
| x = 0 | |
| if (y.dtype.char != "O"): | |
| y = y.astype(float_) | |
| if isinstance(y, np.ndarray) and y.size > 1: | |
| y[np.isnan(y)] = 0 | |
| elif np.isnan(y): | |
| y = 0 | |
| try: | |
| cond = (x.shape == () or y.shape == ()) or x.shape == y.shape | |
| if not cond: | |
| msg = build_err_msg([x, y], | |
| err_msg | |
| + f'\n(shapes {x.shape}, {y.shape} mismatch)', | |
| header=header, | |
| names=('x', 'y')) | |
| assert cond, msg | |
| val = comparison(x, y) | |
| if m is not self.nomask and fill_value: | |
| val = self.masked_array(val, mask=m) | |
| if isinstance(val, bool): | |
| cond = val | |
| reduced = [0] | |
| else: | |
| reduced = val.ravel() | |
| cond = reduced.all() | |
| reduced = reduced.tolist() | |
| if not cond: | |
| match = 100-100.0*reduced.count(1)/len(reduced) | |
| msg = build_err_msg([x, y], | |
| err_msg | |
| + '\n(mismatch %s%%)' % (match,), | |
| header=header, | |
| names=('x', 'y')) | |
| assert cond, msg | |
| except ValueError as e: | |
| msg = build_err_msg([x, y], err_msg, header=header, names=('x', 'y')) | |
| raise ValueError(msg) from e | |
| def assert_array_equal(self, x, y, err_msg=''): | |
| """ | |
| Checks the elementwise equality of two masked arrays. | |
| """ | |
| self.assert_array_compare(self.equal, x, y, err_msg=err_msg, | |
| header='Arrays are not equal') | |
| def test_0(self): | |
| """ | |
| Tests creation | |
| """ | |
| x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) | |
| m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] | |
| xm = self.masked_array(x, mask=m) | |
| xm[0] | |
| def test_1(self): | |
| """ | |
| Tests creation | |
| """ | |
| x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) | |
| y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) | |
| m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] | |
| m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] | |
| xm = self.masked_array(x, mask=m1) | |
| ym = self.masked_array(y, mask=m2) | |
| xf = np.where(m1, 1.e+20, x) | |
| xm.set_fill_value(1.e+20) | |
| assert((xm-ym).filled(0).any()) | |
| s = x.shape | |
| assert(xm.size == reduce(lambda x, y:x*y, s)) | |
| assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) | |
| for s in [(4, 3), (6, 2)]: | |
| x.shape = s | |
| y.shape = s | |
| xm.shape = s | |
| ym.shape = s | |
| xf.shape = s | |
| assert(self.count(xm) == len(m1) - reduce(lambda x, y:x+y, m1)) | |
| def test_2(self): | |
| """ | |
| Tests conversions and indexing. | |
| """ | |
| x1 = np.array([1, 2, 4, 3]) | |
| x2 = self.array(x1, mask=[1, 0, 0, 0]) | |
| x3 = self.array(x1, mask=[0, 1, 0, 1]) | |
| x4 = self.array(x1) | |
| # test conversion to strings, no errors | |
| str(x2) | |
| repr(x2) | |
| # tests of indexing | |
| assert type(x2[1]) is type(x1[1]) | |
| assert x1[1] == x2[1] | |
| x1[2] = 9 | |
| x2[2] = 9 | |
| self.assert_array_equal(x1, x2) | |
| x1[1:3] = 99 | |
| x2[1:3] = 99 | |
| x2[1] = self.masked | |
| x2[1:3] = self.masked | |
| x2[:] = x1 | |
| x2[1] = self.masked | |
| x3[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) | |
| x4[:] = self.masked_array([1, 2, 3, 4], [0, 1, 1, 0]) | |
| x1 = np.arange(5)*1.0 | |
| x2 = self.masked_values(x1, 3.0) | |
| x1 = self.array([1, 'hello', 2, 3], object) | |
| x2 = np.array([1, 'hello', 2, 3], object) | |
| # check that no error occurs. | |
| x1[1] | |
| x2[1] | |
| assert x1[1:1].shape == (0,) | |
| # Tests copy-size | |
| n = [0, 0, 1, 0, 0] | |
| m = self.make_mask(n) | |
| m2 = self.make_mask(m) | |
| assert(m is m2) | |
| m3 = self.make_mask(m, copy=1) | |
| assert(m is not m3) | |
| def test_3(self): | |
| """ | |
| Tests resize/repeat | |
| """ | |
| x4 = self.arange(4) | |
| x4[2] = self.masked | |
| y4 = self.resize(x4, (8,)) | |
| assert self.allequal(self.concatenate([x4, x4]), y4) | |
| assert self.allequal(self.getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) | |
| y5 = self.repeat(x4, (2, 2, 2, 2), axis=0) | |
| self.assert_array_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) | |
| y6 = self.repeat(x4, 2, axis=0) | |
| assert self.allequal(y5, y6) | |
| y7 = x4.repeat((2, 2, 2, 2), axis=0) | |
| assert self.allequal(y5, y7) | |
| y8 = x4.repeat(2, 0) | |
| assert self.allequal(y5, y8) | |
| def test_4(self): | |
| """ | |
| Test of take, transpose, inner, outer products. | |
| """ | |
| x = self.arange(24) | |
| y = np.arange(24) | |
| x[5:6] = self.masked | |
| x = x.reshape(2, 3, 4) | |
| y = y.reshape(2, 3, 4) | |
| assert self.allequal(np.transpose(y, (2, 0, 1)), self.transpose(x, (2, 0, 1))) | |
| assert self.allequal(np.take(y, (2, 0, 1), 1), self.take(x, (2, 0, 1), 1)) | |
| assert self.allequal(np.inner(self.filled(x, 0), self.filled(y, 0)), | |
| self.inner(x, y)) | |
| assert self.allequal(np.outer(self.filled(x, 0), self.filled(y, 0)), | |
| self.outer(x, y)) | |
| y = self.array(['abc', 1, 'def', 2, 3], object) | |
| y[2] = self.masked | |
| t = self.take(y, [0, 3, 4]) | |
| assert t[0] == 'abc' | |
| assert t[1] == 2 | |
| assert t[2] == 3 | |
| def test_5(self): | |
| """ | |
| Tests inplace w/ scalar | |
| """ | |
| x = self.arange(10) | |
| y = self.arange(10) | |
| xm = self.arange(10) | |
| xm[2] = self.masked | |
| x += 1 | |
| assert self.allequal(x, y+1) | |
| xm += 1 | |
| assert self.allequal(xm, y+1) | |
| x = self.arange(10) | |
| xm = self.arange(10) | |
| xm[2] = self.masked | |
| x -= 1 | |
| assert self.allequal(x, y-1) | |
| xm -= 1 | |
| assert self.allequal(xm, y-1) | |
| x = self.arange(10)*1.0 | |
| xm = self.arange(10)*1.0 | |
| xm[2] = self.masked | |
| x *= 2.0 | |
| assert self.allequal(x, y*2) | |
| xm *= 2.0 | |
| assert self.allequal(xm, y*2) | |
| x = self.arange(10)*2 | |
| xm = self.arange(10)*2 | |
| xm[2] = self.masked | |
| x /= 2 | |
| assert self.allequal(x, y) | |
| xm /= 2 | |
| assert self.allequal(xm, y) | |
| x = self.arange(10)*1.0 | |
| xm = self.arange(10)*1.0 | |
| xm[2] = self.masked | |
| x /= 2.0 | |
| assert self.allequal(x, y/2.0) | |
| xm /= self.arange(10) | |
| self.assert_array_equal(xm, self.ones((10,))) | |
| x = self.arange(10).astype(float_) | |
| xm = self.arange(10) | |
| xm[2] = self.masked | |
| x += 1. | |
| assert self.allequal(x, y + 1.) | |
| def test_6(self): | |
| """ | |
| Tests inplace w/ array | |
| """ | |
| x = self.arange(10, dtype=float_) | |
| y = self.arange(10) | |
| xm = self.arange(10, dtype=float_) | |
| xm[2] = self.masked | |
| m = xm.mask | |
| a = self.arange(10, dtype=float_) | |
| a[-1] = self.masked | |
| x += a | |
| xm += a | |
| assert self.allequal(x, y+a) | |
| assert self.allequal(xm, y+a) | |
| assert self.allequal(xm.mask, self.mask_or(m, a.mask)) | |
| x = self.arange(10, dtype=float_) | |
| xm = self.arange(10, dtype=float_) | |
| xm[2] = self.masked | |
| m = xm.mask | |
| a = self.arange(10, dtype=float_) | |
| a[-1] = self.masked | |
| x -= a | |
| xm -= a | |
| assert self.allequal(x, y-a) | |
| assert self.allequal(xm, y-a) | |
| assert self.allequal(xm.mask, self.mask_or(m, a.mask)) | |
| x = self.arange(10, dtype=float_) | |
| xm = self.arange(10, dtype=float_) | |
| xm[2] = self.masked | |
| m = xm.mask | |
| a = self.arange(10, dtype=float_) | |
| a[-1] = self.masked | |
| x *= a | |
| xm *= a | |
| assert self.allequal(x, y*a) | |
| assert self.allequal(xm, y*a) | |
| assert self.allequal(xm.mask, self.mask_or(m, a.mask)) | |
| x = self.arange(10, dtype=float_) | |
| xm = self.arange(10, dtype=float_) | |
| xm[2] = self.masked | |
| m = xm.mask | |
| a = self.arange(10, dtype=float_) | |
| a[-1] = self.masked | |
| x /= a | |
| xm /= a | |
| def test_7(self): | |
| "Tests ufunc" | |
| d = (self.array([1.0, 0, -1, pi/2]*2, mask=[0, 1]+[0]*6), | |
| self.array([1.0, 0, -1, pi/2]*2, mask=[1, 0]+[0]*6),) | |
| for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', | |
| # 'sin', 'cos', 'tan', | |
| # 'arcsin', 'arccos', 'arctan', | |
| # 'sinh', 'cosh', 'tanh', | |
| # 'arcsinh', | |
| # 'arccosh', | |
| # 'arctanh', | |
| # 'absolute', 'fabs', 'negative', | |
| # # 'nonzero', 'around', | |
| # 'floor', 'ceil', | |
| # # 'sometrue', 'alltrue', | |
| # 'logical_not', | |
| # 'add', 'subtract', 'multiply', | |
| # 'divide', 'true_divide', 'floor_divide', | |
| # 'remainder', 'fmod', 'hypot', 'arctan2', | |
| # 'equal', 'not_equal', 'less_equal', 'greater_equal', | |
| # 'less', 'greater', | |
| # 'logical_and', 'logical_or', 'logical_xor', | |
| ]: | |
| try: | |
| uf = getattr(self.umath, f) | |
| except AttributeError: | |
| uf = getattr(fromnumeric, f) | |
| mf = getattr(self.module, f) | |
| args = d[:uf.nin] | |
| ur = uf(*args) | |
| mr = mf(*args) | |
| self.assert_array_equal(ur.filled(0), mr.filled(0), f) | |
| self.assert_array_equal(ur._mask, mr._mask) | |
| def test_99(self): | |
| # test average | |
| ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) | |
| self.assert_array_equal(2.0, self.average(ott, axis=0)) | |
| self.assert_array_equal(2.0, self.average(ott, weights=[1., 1., 2., 1.])) | |
| result, wts = self.average(ott, weights=[1., 1., 2., 1.], returned=1) | |
| self.assert_array_equal(2.0, result) | |
| assert(wts == 4.0) | |
| ott[:] = self.masked | |
| assert(self.average(ott, axis=0) is self.masked) | |
| ott = self.array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) | |
| ott = ott.reshape(2, 2) | |
| ott[:, 1] = self.masked | |
| self.assert_array_equal(self.average(ott, axis=0), [2.0, 0.0]) | |
| assert(self.average(ott, axis=1)[0] is self.masked) | |
| self.assert_array_equal([2., 0.], self.average(ott, axis=0)) | |
| result, wts = self.average(ott, axis=0, returned=1) | |
| self.assert_array_equal(wts, [1., 0.]) | |
| w1 = [0, 1, 1, 1, 1, 0] | |
| w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] | |
| x = self.arange(6) | |
| self.assert_array_equal(self.average(x, axis=0), 2.5) | |
| self.assert_array_equal(self.average(x, axis=0, weights=w1), 2.5) | |
| y = self.array([self.arange(6), 2.0*self.arange(6)]) | |
| self.assert_array_equal(self.average(y, None), np.add.reduce(np.arange(6))*3./12.) | |
| self.assert_array_equal(self.average(y, axis=0), np.arange(6) * 3./2.) | |
| self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) | |
| self.assert_array_equal(self.average(y, None, weights=w2), 20./6.) | |
| self.assert_array_equal(self.average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) | |
| self.assert_array_equal(self.average(y, axis=1), [self.average(x, axis=0), self.average(x, axis=0) * 2.0]) | |
| m1 = self.zeros(6) | |
| m2 = [0, 0, 1, 1, 0, 0] | |
| m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] | |
| m4 = self.ones(6) | |
| m5 = [0, 1, 1, 1, 1, 1] | |
| self.assert_array_equal(self.average(self.masked_array(x, m1), axis=0), 2.5) | |
| self.assert_array_equal(self.average(self.masked_array(x, m2), axis=0), 2.5) | |
| self.assert_array_equal(self.average(self.masked_array(x, m5), axis=0), 0.0) | |
| self.assert_array_equal(self.count(self.average(self.masked_array(x, m4), axis=0)), 0) | |
| z = self.masked_array(y, m3) | |
| self.assert_array_equal(self.average(z, None), 20./6.) | |
| self.assert_array_equal(self.average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) | |
| self.assert_array_equal(self.average(z, axis=1), [2.5, 5.0]) | |
| self.assert_array_equal(self.average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0]) | |
| def test_A(self): | |
| x = self.arange(24) | |
| x[5:6] = self.masked | |
| x = x.reshape(2, 3, 4) | |
| if __name__ == '__main__': | |
| setup_base = ("from __main__ import ModuleTester \n" | |
| "import numpy\n" | |
| "tester = ModuleTester(module)\n") | |
| setup_cur = "import numpy.ma.core as module\n" + setup_base | |
| (nrepeat, nloop) = (10, 10) | |
| for i in range(1, 8): | |
| func = 'tester.test_%i()' % i | |
| cur = timeit.Timer(func, setup_cur).repeat(nrepeat, nloop*10) | |
| cur = np.sort(cur) | |
| print("#%i" % i + 50*'.') | |
| print(eval("ModuleTester.test_%i.__doc__" % i)) | |
| print(f'core_current : {cur[0]:.3f} - {cur[1]:.3f}') | |