peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/triton
/testing.py
import functools | |
import os | |
import subprocess | |
import sys | |
from contextlib import contextmanager | |
from typing import Any, Dict, List | |
from . import language as tl | |
from ._C.libtriton.triton import runtime | |
def nvsmi(attrs): | |
attrs = ','.join(attrs) | |
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits'] | |
out = subprocess.check_output(cmd) | |
ret = out.decode(sys.stdout.encoding).split(',') | |
ret = [int(x) for x in ret] | |
return ret | |
def do_bench_cudagraph(fn, rep=20, grad_to_none=None): | |
import torch | |
""" | |
Benchmark the runtime of the provided function. | |
:param fn: Function to benchmark | |
:type fn: Callable | |
:param rep: Repetition time (in ms) | |
:type rep: int | |
:param grad_to_none: Reset the gradient of the provided tensor to None | |
:type grad_to_none: torch.tensor, optional | |
""" | |
if torch.cuda.current_stream() == torch.cuda.default_stream(): | |
raise RuntimeError("Cannot capture graph in default stream. Please use side stream in benchmark code.") | |
# warmup | |
fn() | |
# step 1 - we estimate the amount of time the kernel call takes | |
# NOTE: this estimate isn't super accurate because the GPU isn't warmed up at this point | |
# but it is probably good enough | |
if grad_to_none is not None: | |
for x in grad_to_none: | |
x.detach_() | |
x.requires_grad_(True) | |
x.grad = None | |
g = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(g): | |
fn() | |
torch.cuda.synchronize() | |
start_event = torch.cuda.Event(enable_timing=True) | |
end_event = torch.cuda.Event(enable_timing=True) | |
start_event.record() | |
g.replay() | |
end_event.record() | |
torch.cuda.synchronize() | |
estimate_ms = start_event.elapsed_time(end_event) | |
n_repeat = max(1, int(rep / estimate_ms)) | |
# step 2 - construct a cuda graph with `n_repeat` unrolled function calls to minimize | |
# host overhead | |
g = torch.cuda.CUDAGraph() | |
with torch.cuda.graph(g): | |
for i in range(n_repeat): | |
if grad_to_none is not None: | |
for x in grad_to_none: | |
x.grad = None | |
fn() | |
torch.cuda.synchronize() | |
# measure time and return | |
ret = [] | |
n_retries = 10 | |
for i in range(n_retries): | |
start_event = torch.cuda.Event(enable_timing=True) | |
end_event = torch.cuda.Event(enable_timing=True) | |
start_event.record() | |
g.replay() | |
end_event.record() | |
torch.cuda.synchronize() | |
ret += [start_event.elapsed_time(end_event) / n_repeat] | |
return torch.mean(torch.tensor(ret)).item() | |
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, quantiles=None, fast_flush=True, return_mode="mean"): | |
assert return_mode in ["min", "max", "mean", "median"] | |
import torch | |
""" | |
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with | |
the 20-th and 80-th performance percentile. | |
:param fn: Function to benchmark | |
:type fn: Callable | |
:param warmup: Warmup time (in ms) | |
:type warmup: int | |
:param rep: Repetition time (in ms) | |
:type rep: int | |
:param grad_to_none: Reset the gradient of the provided tensor to None | |
:type grad_to_none: torch.tensor, optional | |
:param quantiles: Performance percentile to return in addition to the median. | |
:type quantiles: list[float] | |
:param fast_flush: Use faster kernel to flush L2 between measurements | |
:type fast_flush: bool | |
""" | |
fn() | |
torch.cuda.synchronize() | |
# We maintain a buffer of 256 MB that we clear | |
# before each kernel call to make sure that the L2 | |
# doesn't contain any input data before the run | |
if fast_flush: | |
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device='cuda') | |
else: | |
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda') | |
# Estimate the runtime of the function | |
start_event = torch.cuda.Event(enable_timing=True) | |
end_event = torch.cuda.Event(enable_timing=True) | |
start_event.record() | |
for _ in range(5): | |
cache.zero_() | |
fn() | |
end_event.record() | |
torch.cuda.synchronize() | |
estimate_ms = start_event.elapsed_time(end_event) / 5 | |
# compute number of warmup and repeat | |
n_warmup = max(1, int(warmup / estimate_ms)) | |
n_repeat = max(1, int(rep / estimate_ms)) | |
start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)] | |
end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)] | |
# Warm-up | |
for _ in range(n_warmup): | |
fn() | |
# Benchmark | |
for i in range(n_repeat): | |
# we don't want `fn` to accumulate gradient values | |
# if it contains a backward pass. So we clear the | |
# provided gradients | |
if grad_to_none is not None: | |
for x in grad_to_none: | |
x.grad = None | |
# we clear the L2 cache before each run | |
cache.zero_() | |
# record time of `fn` | |
start_event[i].record() | |
fn() | |
end_event[i].record() | |
# Record clocks | |
torch.cuda.synchronize() | |
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)], dtype=torch.float) | |
if quantiles is not None: | |
ret = torch.quantile(times, torch.tensor(quantiles, dtype=torch.float)).tolist() | |
if len(ret) == 1: | |
ret = ret[0] | |
return ret | |
return getattr(torch, return_mode)(times).item() | |
def assert_close(x, y, atol=None, rtol=None, err_msg=''): | |
import numpy as np | |
import torch | |
# canonicalize arguments to be tensors | |
if not isinstance(x, torch.Tensor): | |
x = torch.tensor(x) | |
if not isinstance(y, torch.Tensor): | |
y = torch.tensor(y) | |
# absolute tolerance | |
if atol is None: | |
atol = 1e-2 | |
atol = atol(x.dtype) if callable(atol) else atol | |
# relative tolerance hook | |
if rtol is None: | |
rtol = 0. | |
rtol = rtol(x.dtype) if callable(rtol) else rtol | |
# we use numpy instead of pytorch | |
# as it seems more memory efficient | |
# pytorch tends to oom on large tensors | |
if isinstance(x, torch.Tensor): | |
if x.dtype == torch.bfloat16: | |
x = x.float() | |
x = x.cpu().detach().numpy() | |
if isinstance(y, torch.Tensor): | |
if y.dtype == torch.bfloat16: | |
y = y.float() | |
y = y.cpu().detach().numpy() | |
# we handle size==1 case separately as we can | |
# provide better error message there | |
if x.size > 1 or y.size > 1: | |
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol, equal_nan=True) | |
return | |
if not np.allclose(x, y, atol=atol, rtol=rtol): | |
raise AssertionError(f'{err_msg} {x} is not close to {y} (atol={atol}, rtol={rtol})') | |
class Benchmark: | |
""" | |
This class is used by the :code:`perf_report` function to generate line plots with a concise API. | |
""" | |
def __init__( | |
self, | |
x_names: List[str], | |
x_vals: List[Any], | |
line_arg: str, | |
line_vals: List[Any], | |
line_names: List[str], | |
plot_name: str, | |
args: Dict[str, Any], | |
xlabel: str = '', | |
ylabel: str = '', | |
x_log: bool = False, | |
y_log: bool = False, | |
color=None, | |
styles=None, | |
): | |
""" | |
Constructor. | |
x_vals can be a list of scalars or a list of tuples/lists. If x_vals is a list | |
of scalars and there are multiple x_names, all arguments will have the same value. | |
If x_vals is a list of tuples/lists, each element should have the same length as | |
x_names. | |
:param x_names: Name of the arguments that should appear on the x axis of the plot. | |
:type x_names: List[str] | |
:param x_vals: List of values to use for the arguments in :code:`x_names`. | |
:type x_vals: List[Any] | |
:param line_arg: Argument name for which different values correspond to different lines in the plot. | |
:type line_arg: str | |
:param line_vals: List of values to use for the arguments in :code:`line_arg`. | |
:type line_vals: List[Any] | |
:param line_names: Label names for the different lines. | |
:type line_names: List[str] | |
:param plot_name: Name of the plot. | |
:type plot_name: str | |
:param args: Dictionary of keyword arguments to remain fixed throughout the benchmark. | |
:type args: Dict[str, Any] | |
:param xlabel: Label for the x axis of the plot. | |
:type xlabel: str, optional | |
:param ylabel: Label for the y axis of the plot. | |
:type ylabel: str, optional | |
:param x_log: Whether the x axis should be log scale. | |
:type x_log: bool, optional | |
:param y_log: Whether the y axis should be log scale. | |
:type y_log: bool, optional | |
""" | |
self.x_names = x_names | |
self.x_vals = x_vals | |
self.x_log = x_log | |
self.line_arg = line_arg | |
self.line_vals = line_vals | |
self.line_names = line_names | |
self.y_log = y_log | |
self.styles = styles | |
# plot info | |
self.xlabel = xlabel | |
self.ylabel = ylabel | |
self.plot_name = plot_name | |
self.args = args | |
class Mark: | |
def __init__(self, fn, benchmarks): | |
self.fn = fn | |
self.benchmarks = benchmarks | |
def _run(self, bench: Benchmark, save_path: str, show_plots: bool, print_data: bool, diff_col=False, **kwrags): | |
import os | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
y_mean = bench.line_names | |
y_min = [f'{x}-min' for x in bench.line_names] | |
y_max = [f'{x}-max' for x in bench.line_names] | |
x_names = list(bench.x_names) | |
df = pd.DataFrame(columns=x_names + y_mean + y_min + y_max) | |
for x in bench.x_vals: | |
# x can be a single value or a sequence of values. | |
if not isinstance(x, (list, tuple)): | |
x = [x for _ in x_names] | |
if len(x) != len(x_names): | |
raise ValueError(f"Expected {len(x_names)} values, got {x}") | |
x_args = dict(zip(x_names, x)) | |
row_mean, row_min, row_max = [], [], [] | |
for y in bench.line_vals: | |
ret = self.fn(**x_args, **{bench.line_arg: y}, **bench.args, **kwrags) | |
try: | |
y_mean, y_min, y_max = ret | |
except TypeError: | |
y_mean, y_min, y_max = ret, None, None | |
row_mean += [y_mean] | |
row_min += [y_min] | |
row_max += [y_max] | |
df.loc[len(df)] = list(x) + row_mean + row_min + row_max | |
if bench.plot_name: | |
plt.figure() | |
ax = plt.subplot() | |
# Plot first x value on x axis if there are multiple. | |
first_x = x_names[0] | |
for i, y in enumerate(bench.line_names): | |
y_min, y_max = df[y + '-min'], df[y + '-max'] | |
col = bench.styles[i][0] if bench.styles else None | |
sty = bench.styles[i][1] if bench.styles else None | |
ax.plot(df[first_x], df[y], label=y, color=col, ls=sty) | |
if not y_min.isnull().all() and not y_max.isnull().all(): | |
y_min = y_min.astype(float) | |
y_max = y_max.astype(float) | |
ax.fill_between(df[first_x], y_min, y_max, alpha=0.15, color=col) | |
ax.legend() | |
ax.set_xlabel(bench.xlabel or first_x) | |
ax.set_ylabel(bench.ylabel) | |
# ax.set_title(bench.plot_name) | |
ax.set_xscale("log" if bench.x_log else "linear") | |
ax.set_yscale("log" if bench.y_log else "linear") | |
if show_plots: | |
plt.show() | |
if save_path: | |
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png")) | |
df = df[x_names + bench.line_names] | |
if diff_col and df.shape[1] == 2: | |
col0, col1 = df.columns.tolist() | |
df['Diff'] = df[col1] - df[col0] | |
if print_data: | |
print(bench.plot_name + ':') | |
print(df) | |
if save_path: | |
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False) | |
return df | |
def run(self, show_plots=False, print_data=False, save_path='', return_df=False, **kwargs): | |
has_single_bench = isinstance(self.benchmarks, Benchmark) | |
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks | |
result_dfs = [] | |
if save_path: | |
html = open(os.path.join(save_path, "results.html"), "w") | |
html.write("<html><body>\n") | |
for bench in benchmarks: | |
result_dfs.append(self._run(bench, save_path, show_plots, print_data, **kwargs)) | |
if save_path: | |
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n") | |
if save_path: | |
html.write("</body></html>\n") | |
if return_df: | |
if has_single_bench: | |
return result_dfs[0] | |
else: | |
return result_dfs | |
return None | |
def perf_report(benchmarks): | |
""" | |
Mark a function for benchmarking. The benchmark can then be executed by using the :code:`.run` method on the return value. | |
:param benchmarks: Benchmarking configurations. | |
:type benchmarks: List of :class:`Benchmark` | |
""" | |
wrapper = lambda fn: Mark(fn, benchmarks) | |
return wrapper | |
def get_dram_gbps(backend=None, device=None): | |
''' return DRAM bandwidth in GB/s ''' | |
import torch | |
from .runtime import driver | |
if not backend: | |
backend = runtime.backend.CUDA | |
if not device: | |
device = torch.cuda.current_device() | |
mem_clock_khz = driver.utils.get_device_properties(device)["mem_clock_rate"] # in kHz | |
bus_width = driver.utils.get_device_properties(device)["mem_bus_width"] | |
bw_gbps = mem_clock_khz * bus_width * 2 / 1e6 / 8 # In GB/s | |
return bw_gbps | |
def get_max_tensorcore_tflops(dtype, clock_rate, backend=None, device=None): | |
import torch | |
from .runtime import driver | |
if not backend: | |
backend = runtime.backend.CUDA | |
if not device: | |
device = torch.cuda.current_device() | |
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4 | |
capability = torch.cuda.get_device_capability(device) | |
if capability[0] < 8: | |
assert dtype == torch.float16 | |
ops_per_sub_core = 256 # 2 4x4x4 Tensor Cores | |
else: | |
if dtype in [torch.float32, torch.int32]: | |
ops_per_sub_core = 256 | |
elif dtype in [torch.float16, torch.bfloat16, torch.int16]: | |
ops_per_sub_core = 512 | |
elif dtype in [torch.int8, tl.float8e4nv, tl.float8e4b15, tl.float8e5]: | |
ops_per_sub_core = 1024 | |
else: | |
raise RuntimeError("dtype not supported") | |
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9 | |
return tflops | |
# create decorator that wraps test function into | |
# a cuda-memcheck system call | |
def cuda_memcheck(**target_kwargs): | |
def decorator(test_fn): | |
def wrapper(*args, **kwargs): | |
import psutil | |
ppid_name = psutil.Process(os.getppid()).name() | |
run_cuda_memcheck = target_kwargs.items() <= kwargs.items() | |
if run_cuda_memcheck and ppid_name != "cuda-memcheck": | |
path = os.path.realpath(test_fn.__globals__["__file__"]) | |
# get path of current file | |
env = {"PATH": os.environ["PATH"], "PYTORCH_NO_CUDA_MEMORY_CACHING": "1"} | |
assert 'request' in kwargs, "memcheck'ed test must have a (possibly unused) `request` fixture" | |
test_id = kwargs['request'].node.callspec.id | |
cmd = f"{path}::{test_fn.__name__}[{test_id}]" | |
out = subprocess.run(["cuda-memcheck", "pytest", "-vs", cmd], capture_output=True, env=env) | |
assert out.returncode == 0, "cuda-memcheck returned an error: bounds checking failed" | |
assert "ERROR SUMMARY: 0 errors" in str(out.stdout) | |
else: | |
test_fn(*args, **kwargs) | |
return wrapper | |
return decorator | |
def set_gpu_clock(ref_sm_clock=1350, ref_mem_clock=1215): | |
try: | |
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "1"]) | |
subprocess.check_output([ | |
"nvidia-smi", | |
"-i", | |
"0", | |
f"--lock-gpu-clocks={ref_sm_clock},{ref_sm_clock}", | |
]) | |
subprocess.check_output([ | |
"nvidia-smi", | |
"-i", | |
"0", | |
f"--lock-memory-clocks={ref_mem_clock},{ref_mem_clock}", | |
]) | |
cur_sm_clock = nvsmi(["clocks.current.sm"])[0] | |
cur_mem_clock = nvsmi(["clocks.current.memory"])[0] | |
assert abs(cur_sm_clock - ref_sm_clock) < 10, f"GPU SMs must run at {ref_sm_clock} MHz" | |
assert abs(cur_mem_clock - ref_mem_clock) < 10, f"GPU SMs must run at {ref_mem_clock} MHz" | |
tflops = 1e-6 * 2 * 108 * 4 * 256 * ref_sm_clock | |
gbps = 640 * 2 * ref_mem_clock * 1e-3 | |
yield tflops, gbps | |
finally: | |
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "0"]) | |
subprocess.check_output(["nvidia-smi", "-i", "0", "-rgc"]) | |
subprocess.check_output(["nvidia-smi", "-i", "0", "-rmc"]) | |
def get_max_simd_tflops(dtype, clock_rate, backend=None, device=None): | |
import torch | |
from .runtime import driver | |
if not backend: | |
backend = runtime.backend.CUDA | |
if not device: | |
device = torch.cuda.current_device() | |
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4 | |
capability = torch.cuda.get_device_capability() | |
if capability[0] < 8: | |
if dtype == torch.float32: | |
ops_per_sub_core = 32 # 2*16 | |
elif dtype == torch.float16: | |
ops_per_sub_core = 64 | |
else: | |
raise RuntimeError("dtype not supported") | |
else: | |
if dtype == torch.float32: | |
ops_per_sub_core = 32 | |
elif dtype in [torch.float16, torch.bfloat16]: | |
ops_per_sub_core = 64 | |
else: | |
raise RuntimeError("dtype not supported") | |
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9 | |
return tflops | |