applied-ai-018's picture
Add files using upload-large-folder tool
9f700b4 verified
raw
history blame
18.3 kB
import functools
import os
import subprocess
import sys
from contextlib import contextmanager
from typing import Any, Dict, List
from . import language as tl
from ._C.libtriton.triton import runtime
def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
def do_bench_cudagraph(fn, rep=20, grad_to_none=None):
import torch
"""
Benchmark the runtime of the provided function.
:param fn: Function to benchmark
:type fn: Callable
:param rep: Repetition time (in ms)
:type rep: int
:param grad_to_none: Reset the gradient of the provided tensor to None
:type grad_to_none: torch.tensor, optional
"""
if torch.cuda.current_stream() == torch.cuda.default_stream():
raise RuntimeError("Cannot capture graph in default stream. Please use side stream in benchmark code.")
# warmup
fn()
# step 1 - we estimate the amount of time the kernel call takes
# NOTE: this estimate isn't super accurate because the GPU isn't warmed up at this point
# but it is probably good enough
if grad_to_none is not None:
for x in grad_to_none:
x.detach_()
x.requires_grad_(True)
x.grad = None
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
fn()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
g.replay()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event)
n_repeat = max(1, int(rep / estimate_ms))
# step 2 - construct a cuda graph with `n_repeat` unrolled function calls to minimize
# host overhead
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
for i in range(n_repeat):
if grad_to_none is not None:
for x in grad_to_none:
x.grad = None
fn()
torch.cuda.synchronize()
# measure time and return
ret = []
n_retries = 10
for i in range(n_retries):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
g.replay()
end_event.record()
torch.cuda.synchronize()
ret += [start_event.elapsed_time(end_event) / n_repeat]
return torch.mean(torch.tensor(ret)).item()
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, quantiles=None, fast_flush=True, return_mode="mean"):
assert return_mode in ["min", "max", "mean", "median"]
import torch
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
:param fn: Function to benchmark
:type fn: Callable
:param warmup: Warmup time (in ms)
:type warmup: int
:param rep: Repetition time (in ms)
:type rep: int
:param grad_to_none: Reset the gradient of the provided tensor to None
:type grad_to_none: torch.tensor, optional
:param quantiles: Performance percentile to return in addition to the median.
:type quantiles: list[float]
:param fast_flush: Use faster kernel to flush L2 between measurements
:type fast_flush: bool
"""
fn()
torch.cuda.synchronize()
# We maintain a buffer of 256 MB that we clear
# before each kernel call to make sure that the L2
# doesn't contain any input data before the run
if fast_flush:
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device='cuda')
else:
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
# Estimate the runtime of the function
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(5):
cache.zero_()
fn()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup / estimate_ms))
n_repeat = max(1, int(rep / estimate_ms))
start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
# Warm-up
for _ in range(n_warmup):
fn()
# Benchmark
for i in range(n_repeat):
# we don't want `fn` to accumulate gradient values
# if it contains a backward pass. So we clear the
# provided gradients
if grad_to_none is not None:
for x in grad_to_none:
x.grad = None
# we clear the L2 cache before each run
cache.zero_()
# record time of `fn`
start_event[i].record()
fn()
end_event[i].record()
# Record clocks
torch.cuda.synchronize()
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)], dtype=torch.float)
if quantiles is not None:
ret = torch.quantile(times, torch.tensor(quantiles, dtype=torch.float)).tolist()
if len(ret) == 1:
ret = ret[0]
return ret
return getattr(torch, return_mode)(times).item()
def assert_close(x, y, atol=None, rtol=None, err_msg=''):
import numpy as np
import torch
# canonicalize arguments to be tensors
if not isinstance(x, torch.Tensor):
x = torch.tensor(x)
if not isinstance(y, torch.Tensor):
y = torch.tensor(y)
# absolute tolerance
if atol is None:
atol = 1e-2
atol = atol(x.dtype) if callable(atol) else atol
# relative tolerance hook
if rtol is None:
rtol = 0.
rtol = rtol(x.dtype) if callable(rtol) else rtol
# we use numpy instead of pytorch
# as it seems more memory efficient
# pytorch tends to oom on large tensors
if isinstance(x, torch.Tensor):
if x.dtype == torch.bfloat16:
x = x.float()
x = x.cpu().detach().numpy()
if isinstance(y, torch.Tensor):
if y.dtype == torch.bfloat16:
y = y.float()
y = y.cpu().detach().numpy()
# we handle size==1 case separately as we can
# provide better error message there
if x.size > 1 or y.size > 1:
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol, equal_nan=True)
return
if not np.allclose(x, y, atol=atol, rtol=rtol):
raise AssertionError(f'{err_msg} {x} is not close to {y} (atol={atol}, rtol={rtol})')
class Benchmark:
"""
This class is used by the :code:`perf_report` function to generate line plots with a concise API.
"""
def __init__(
self,
x_names: List[str],
x_vals: List[Any],
line_arg: str,
line_vals: List[Any],
line_names: List[str],
plot_name: str,
args: Dict[str, Any],
xlabel: str = '',
ylabel: str = '',
x_log: bool = False,
y_log: bool = False,
color=None,
styles=None,
):
"""
Constructor.
x_vals can be a list of scalars or a list of tuples/lists. If x_vals is a list
of scalars and there are multiple x_names, all arguments will have the same value.
If x_vals is a list of tuples/lists, each element should have the same length as
x_names.
:param x_names: Name of the arguments that should appear on the x axis of the plot.
:type x_names: List[str]
:param x_vals: List of values to use for the arguments in :code:`x_names`.
:type x_vals: List[Any]
:param line_arg: Argument name for which different values correspond to different lines in the plot.
:type line_arg: str
:param line_vals: List of values to use for the arguments in :code:`line_arg`.
:type line_vals: List[Any]
:param line_names: Label names for the different lines.
:type line_names: List[str]
:param plot_name: Name of the plot.
:type plot_name: str
:param args: Dictionary of keyword arguments to remain fixed throughout the benchmark.
:type args: Dict[str, Any]
:param xlabel: Label for the x axis of the plot.
:type xlabel: str, optional
:param ylabel: Label for the y axis of the plot.
:type ylabel: str, optional
:param x_log: Whether the x axis should be log scale.
:type x_log: bool, optional
:param y_log: Whether the y axis should be log scale.
:type y_log: bool, optional
"""
self.x_names = x_names
self.x_vals = x_vals
self.x_log = x_log
self.line_arg = line_arg
self.line_vals = line_vals
self.line_names = line_names
self.y_log = y_log
self.styles = styles
# plot info
self.xlabel = xlabel
self.ylabel = ylabel
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
self.benchmarks = benchmarks
def _run(self, bench: Benchmark, save_path: str, show_plots: bool, print_data: bool, diff_col=False, **kwrags):
import os
import matplotlib.pyplot as plt
import pandas as pd
y_mean = bench.line_names
y_min = [f'{x}-min' for x in bench.line_names]
y_max = [f'{x}-max' for x in bench.line_names]
x_names = list(bench.x_names)
df = pd.DataFrame(columns=x_names + y_mean + y_min + y_max)
for x in bench.x_vals:
# x can be a single value or a sequence of values.
if not isinstance(x, (list, tuple)):
x = [x for _ in x_names]
if len(x) != len(x_names):
raise ValueError(f"Expected {len(x_names)} values, got {x}")
x_args = dict(zip(x_names, x))
row_mean, row_min, row_max = [], [], []
for y in bench.line_vals:
ret = self.fn(**x_args, **{bench.line_arg: y}, **bench.args, **kwrags)
try:
y_mean, y_min, y_max = ret
except TypeError:
y_mean, y_min, y_max = ret, None, None
row_mean += [y_mean]
row_min += [y_min]
row_max += [y_max]
df.loc[len(df)] = list(x) + row_mean + row_min + row_max
if bench.plot_name:
plt.figure()
ax = plt.subplot()
# Plot first x value on x axis if there are multiple.
first_x = x_names[0]
for i, y in enumerate(bench.line_names):
y_min, y_max = df[y + '-min'], df[y + '-max']
col = bench.styles[i][0] if bench.styles else None
sty = bench.styles[i][1] if bench.styles else None
ax.plot(df[first_x], df[y], label=y, color=col, ls=sty)
if not y_min.isnull().all() and not y_max.isnull().all():
y_min = y_min.astype(float)
y_max = y_max.astype(float)
ax.fill_between(df[first_x], y_min, y_max, alpha=0.15, color=col)
ax.legend()
ax.set_xlabel(bench.xlabel or first_x)
ax.set_ylabel(bench.ylabel)
# ax.set_title(bench.plot_name)
ax.set_xscale("log" if bench.x_log else "linear")
ax.set_yscale("log" if bench.y_log else "linear")
if show_plots:
plt.show()
if save_path:
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png"))
df = df[x_names + bench.line_names]
if diff_col and df.shape[1] == 2:
col0, col1 = df.columns.tolist()
df['Diff'] = df[col1] - df[col0]
if print_data:
print(bench.plot_name + ':')
print(df)
if save_path:
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
return df
def run(self, show_plots=False, print_data=False, save_path='', return_df=False, **kwargs):
has_single_bench = isinstance(self.benchmarks, Benchmark)
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks
result_dfs = []
if save_path:
html = open(os.path.join(save_path, "results.html"), "w")
html.write("<html><body>\n")
for bench in benchmarks:
result_dfs.append(self._run(bench, save_path, show_plots, print_data, **kwargs))
if save_path:
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
if save_path:
html.write("</body></html>\n")
if return_df:
if has_single_bench:
return result_dfs[0]
else:
return result_dfs
return None
def perf_report(benchmarks):
"""
Mark a function for benchmarking. The benchmark can then be executed by using the :code:`.run` method on the return value.
:param benchmarks: Benchmarking configurations.
:type benchmarks: List of :class:`Benchmark`
"""
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper
def get_dram_gbps(backend=None, device=None):
''' return DRAM bandwidth in GB/s '''
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
mem_clock_khz = driver.utils.get_device_properties(device)["mem_clock_rate"] # in kHz
bus_width = driver.utils.get_device_properties(device)["mem_bus_width"]
bw_gbps = mem_clock_khz * bus_width * 2 / 1e6 / 8 # In GB/s
return bw_gbps
def get_max_tensorcore_tflops(dtype, clock_rate, backend=None, device=None):
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4
capability = torch.cuda.get_device_capability(device)
if capability[0] < 8:
assert dtype == torch.float16
ops_per_sub_core = 256 # 2 4x4x4 Tensor Cores
else:
if dtype in [torch.float32, torch.int32]:
ops_per_sub_core = 256
elif dtype in [torch.float16, torch.bfloat16, torch.int16]:
ops_per_sub_core = 512
elif dtype in [torch.int8, tl.float8e4nv, tl.float8e4b15, tl.float8e5]:
ops_per_sub_core = 1024
else:
raise RuntimeError("dtype not supported")
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9
return tflops
# create decorator that wraps test function into
# a cuda-memcheck system call
def cuda_memcheck(**target_kwargs):
def decorator(test_fn):
@functools.wraps(test_fn)
def wrapper(*args, **kwargs):
import psutil
ppid_name = psutil.Process(os.getppid()).name()
run_cuda_memcheck = target_kwargs.items() <= kwargs.items()
if run_cuda_memcheck and ppid_name != "cuda-memcheck":
path = os.path.realpath(test_fn.__globals__["__file__"])
# get path of current file
env = {"PATH": os.environ["PATH"], "PYTORCH_NO_CUDA_MEMORY_CACHING": "1"}
assert 'request' in kwargs, "memcheck'ed test must have a (possibly unused) `request` fixture"
test_id = kwargs['request'].node.callspec.id
cmd = f"{path}::{test_fn.__name__}[{test_id}]"
out = subprocess.run(["cuda-memcheck", "pytest", "-vs", cmd], capture_output=True, env=env)
assert out.returncode == 0, "cuda-memcheck returned an error: bounds checking failed"
assert "ERROR SUMMARY: 0 errors" in str(out.stdout)
else:
test_fn(*args, **kwargs)
return wrapper
return decorator
@contextmanager
def set_gpu_clock(ref_sm_clock=1350, ref_mem_clock=1215):
try:
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "1"])
subprocess.check_output([
"nvidia-smi",
"-i",
"0",
f"--lock-gpu-clocks={ref_sm_clock},{ref_sm_clock}",
])
subprocess.check_output([
"nvidia-smi",
"-i",
"0",
f"--lock-memory-clocks={ref_mem_clock},{ref_mem_clock}",
])
cur_sm_clock = nvsmi(["clocks.current.sm"])[0]
cur_mem_clock = nvsmi(["clocks.current.memory"])[0]
assert abs(cur_sm_clock - ref_sm_clock) < 10, f"GPU SMs must run at {ref_sm_clock} MHz"
assert abs(cur_mem_clock - ref_mem_clock) < 10, f"GPU SMs must run at {ref_mem_clock} MHz"
tflops = 1e-6 * 2 * 108 * 4 * 256 * ref_sm_clock
gbps = 640 * 2 * ref_mem_clock * 1e-3
yield tflops, gbps
finally:
subprocess.check_output(["nvidia-smi", "-i", "0", "-pm", "0"])
subprocess.check_output(["nvidia-smi", "-i", "0", "-rgc"])
subprocess.check_output(["nvidia-smi", "-i", "0", "-rmc"])
def get_max_simd_tflops(dtype, clock_rate, backend=None, device=None):
import torch
from .runtime import driver
if not backend:
backend = runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
num_subcores = driver.utils.get_device_properties(device)["multiprocessor_count"] * 4
capability = torch.cuda.get_device_capability()
if capability[0] < 8:
if dtype == torch.float32:
ops_per_sub_core = 32 # 2*16
elif dtype == torch.float16:
ops_per_sub_core = 64
else:
raise RuntimeError("dtype not supported")
else:
if dtype == torch.float32:
ops_per_sub_core = 32
elif dtype in [torch.float16, torch.bfloat16]:
ops_per_sub_core = 64
else:
raise RuntimeError("dtype not supported")
tflops = num_subcores * clock_rate * ops_per_sub_core * 1e-9
return tflops