peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/pyarrow
/pandas_compat.py
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import ast | |
from collections.abc import Sequence | |
from concurrent import futures | |
# import threading submodule upfront to avoid partially initialized | |
# module bug (ARROW-11983) | |
import concurrent.futures.thread # noqa | |
from copy import deepcopy | |
from itertools import zip_longest | |
import json | |
import operator | |
import re | |
import warnings | |
import numpy as np | |
import pyarrow as pa | |
from pyarrow.lib import _pandas_api, frombytes # noqa | |
_logical_type_map = {} | |
def get_logical_type_map(): | |
global _logical_type_map | |
if not _logical_type_map: | |
_logical_type_map.update({ | |
pa.lib.Type_NA: 'empty', | |
pa.lib.Type_BOOL: 'bool', | |
pa.lib.Type_INT8: 'int8', | |
pa.lib.Type_INT16: 'int16', | |
pa.lib.Type_INT32: 'int32', | |
pa.lib.Type_INT64: 'int64', | |
pa.lib.Type_UINT8: 'uint8', | |
pa.lib.Type_UINT16: 'uint16', | |
pa.lib.Type_UINT32: 'uint32', | |
pa.lib.Type_UINT64: 'uint64', | |
pa.lib.Type_HALF_FLOAT: 'float16', | |
pa.lib.Type_FLOAT: 'float32', | |
pa.lib.Type_DOUBLE: 'float64', | |
pa.lib.Type_DATE32: 'date', | |
pa.lib.Type_DATE64: 'date', | |
pa.lib.Type_TIME32: 'time', | |
pa.lib.Type_TIME64: 'time', | |
pa.lib.Type_BINARY: 'bytes', | |
pa.lib.Type_FIXED_SIZE_BINARY: 'bytes', | |
pa.lib.Type_STRING: 'unicode', | |
}) | |
return _logical_type_map | |
def get_logical_type(arrow_type): | |
logical_type_map = get_logical_type_map() | |
try: | |
return logical_type_map[arrow_type.id] | |
except KeyError: | |
if isinstance(arrow_type, pa.lib.DictionaryType): | |
return 'categorical' | |
elif isinstance(arrow_type, pa.lib.ListType): | |
return 'list[{}]'.format(get_logical_type(arrow_type.value_type)) | |
elif isinstance(arrow_type, pa.lib.TimestampType): | |
return 'datetimetz' if arrow_type.tz is not None else 'datetime' | |
elif isinstance(arrow_type, pa.lib.Decimal128Type): | |
return 'decimal' | |
return 'object' | |
_numpy_logical_type_map = { | |
np.bool_: 'bool', | |
np.int8: 'int8', | |
np.int16: 'int16', | |
np.int32: 'int32', | |
np.int64: 'int64', | |
np.uint8: 'uint8', | |
np.uint16: 'uint16', | |
np.uint32: 'uint32', | |
np.uint64: 'uint64', | |
np.float32: 'float32', | |
np.float64: 'float64', | |
'datetime64[D]': 'date', | |
np.str_: 'string', | |
np.bytes_: 'bytes', | |
} | |
def get_logical_type_from_numpy(pandas_collection): | |
try: | |
return _numpy_logical_type_map[pandas_collection.dtype.type] | |
except KeyError: | |
if hasattr(pandas_collection.dtype, 'tz'): | |
return 'datetimetz' | |
# See https://github.com/pandas-dev/pandas/issues/24739 | |
if str(pandas_collection.dtype) == 'datetime64[ns]': | |
return 'datetime64[ns]' | |
result = _pandas_api.infer_dtype(pandas_collection) | |
if result == 'string': | |
return 'unicode' | |
return result | |
def get_extension_dtype_info(column): | |
dtype = column.dtype | |
if str(dtype) == 'category': | |
cats = getattr(column, 'cat', column) | |
assert cats is not None | |
metadata = { | |
'num_categories': len(cats.categories), | |
'ordered': cats.ordered, | |
} | |
physical_dtype = str(cats.codes.dtype) | |
elif hasattr(dtype, 'tz'): | |
metadata = {'timezone': pa.lib.tzinfo_to_string(dtype.tz)} | |
physical_dtype = 'datetime64[ns]' | |
else: | |
metadata = None | |
physical_dtype = str(dtype) | |
return physical_dtype, metadata | |
def get_column_metadata(column, name, arrow_type, field_name): | |
"""Construct the metadata for a given column | |
Parameters | |
---------- | |
column : pandas.Series or pandas.Index | |
name : str | |
arrow_type : pyarrow.DataType | |
field_name : str | |
Equivalent to `name` when `column` is a `Series`, otherwise if `column` | |
is a pandas Index then `field_name` will not be the same as `name`. | |
This is the name of the field in the arrow Table's schema. | |
Returns | |
------- | |
dict | |
""" | |
logical_type = get_logical_type(arrow_type) | |
string_dtype, extra_metadata = get_extension_dtype_info(column) | |
if logical_type == 'decimal': | |
extra_metadata = { | |
'precision': arrow_type.precision, | |
'scale': arrow_type.scale, | |
} | |
string_dtype = 'object' | |
if name is not None and not isinstance(name, str): | |
raise TypeError( | |
'Column name must be a string. Got column {} of type {}'.format( | |
name, type(name).__name__ | |
) | |
) | |
assert field_name is None or isinstance(field_name, str), \ | |
str(type(field_name)) | |
return { | |
'name': name, | |
'field_name': 'None' if field_name is None else field_name, | |
'pandas_type': logical_type, | |
'numpy_type': string_dtype, | |
'metadata': extra_metadata, | |
} | |
def construct_metadata(columns_to_convert, df, column_names, index_levels, | |
index_descriptors, preserve_index, types): | |
"""Returns a dictionary containing enough metadata to reconstruct a pandas | |
DataFrame as an Arrow Table, including index columns. | |
Parameters | |
---------- | |
columns_to_convert : list[pd.Series] | |
df : pandas.DataFrame | |
index_levels : List[pd.Index] | |
index_descriptors : List[Dict] | |
preserve_index : bool | |
types : List[pyarrow.DataType] | |
Returns | |
------- | |
dict | |
""" | |
num_serialized_index_levels = len([descr for descr in index_descriptors | |
if not isinstance(descr, dict)]) | |
# Use ntypes instead of Python shorthand notation [:-len(x)] as [:-0] | |
# behaves differently to what we want. | |
ntypes = len(types) | |
df_types = types[:ntypes - num_serialized_index_levels] | |
index_types = types[ntypes - num_serialized_index_levels:] | |
column_metadata = [] | |
for col, sanitized_name, arrow_type in zip(columns_to_convert, | |
column_names, df_types): | |
metadata = get_column_metadata(col, name=sanitized_name, | |
arrow_type=arrow_type, | |
field_name=sanitized_name) | |
column_metadata.append(metadata) | |
index_column_metadata = [] | |
if preserve_index is not False: | |
non_str_index_names = [] | |
for level, arrow_type, descriptor in zip(index_levels, index_types, | |
index_descriptors): | |
if isinstance(descriptor, dict): | |
# The index is represented in a non-serialized fashion, | |
# e.g. RangeIndex | |
continue | |
if level.name is not None and not isinstance(level.name, str): | |
non_str_index_names.append(level.name) | |
metadata = get_column_metadata( | |
level, | |
name=_column_name_to_strings(level.name), | |
arrow_type=arrow_type, | |
field_name=descriptor, | |
) | |
index_column_metadata.append(metadata) | |
if len(non_str_index_names) > 0: | |
warnings.warn( | |
f"The DataFrame has non-str index name `{non_str_index_names}`" | |
" which will be converted to string" | |
" and not roundtrip correctly.", | |
UserWarning, stacklevel=4) | |
column_indexes = [] | |
levels = getattr(df.columns, 'levels', [df.columns]) | |
names = getattr(df.columns, 'names', [df.columns.name]) | |
for level, name in zip(levels, names): | |
metadata = _get_simple_index_descriptor(level, name) | |
column_indexes.append(metadata) | |
else: | |
index_descriptors = index_column_metadata = column_indexes = [] | |
return { | |
b'pandas': json.dumps({ | |
'index_columns': index_descriptors, | |
'column_indexes': column_indexes, | |
'columns': column_metadata + index_column_metadata, | |
'creator': { | |
'library': 'pyarrow', | |
'version': pa.__version__ | |
}, | |
'pandas_version': _pandas_api.version | |
}).encode('utf8') | |
} | |
def _get_simple_index_descriptor(level, name): | |
string_dtype, extra_metadata = get_extension_dtype_info(level) | |
pandas_type = get_logical_type_from_numpy(level) | |
if 'mixed' in pandas_type: | |
warnings.warn( | |
"The DataFrame has column names of mixed type. They will be " | |
"converted to strings and not roundtrip correctly.", | |
UserWarning, stacklevel=4) | |
if pandas_type == 'unicode': | |
assert not extra_metadata | |
extra_metadata = {'encoding': 'UTF-8'} | |
return { | |
'name': name, | |
'field_name': name, | |
'pandas_type': pandas_type, | |
'numpy_type': string_dtype, | |
'metadata': extra_metadata, | |
} | |
def _column_name_to_strings(name): | |
"""Convert a column name (or level) to either a string or a recursive | |
collection of strings. | |
Parameters | |
---------- | |
name : str or tuple | |
Returns | |
------- | |
value : str or tuple | |
Examples | |
-------- | |
>>> name = 'foo' | |
>>> _column_name_to_strings(name) | |
'foo' | |
>>> name = ('foo', 'bar') | |
>>> _column_name_to_strings(name) | |
"('foo', 'bar')" | |
>>> import pandas as pd | |
>>> name = (1, pd.Timestamp('2017-02-01 00:00:00')) | |
>>> _column_name_to_strings(name) | |
"('1', '2017-02-01 00:00:00')" | |
""" | |
if isinstance(name, str): | |
return name | |
elif isinstance(name, bytes): | |
# XXX: should we assume that bytes in Python 3 are UTF-8? | |
return name.decode('utf8') | |
elif isinstance(name, tuple): | |
return str(tuple(map(_column_name_to_strings, name))) | |
elif isinstance(name, Sequence): | |
raise TypeError("Unsupported type for MultiIndex level") | |
elif name is None: | |
return None | |
return str(name) | |
def _index_level_name(index, i, column_names): | |
"""Return the name of an index level or a default name if `index.name` is | |
None or is already a column name. | |
Parameters | |
---------- | |
index : pandas.Index | |
i : int | |
Returns | |
------- | |
name : str | |
""" | |
if index.name is not None and index.name not in column_names: | |
return _column_name_to_strings(index.name) | |
else: | |
return '__index_level_{:d}__'.format(i) | |
def _get_columns_to_convert(df, schema, preserve_index, columns): | |
columns = _resolve_columns_of_interest(df, schema, columns) | |
if not df.columns.is_unique: | |
raise ValueError( | |
'Duplicate column names found: {}'.format(list(df.columns)) | |
) | |
if schema is not None: | |
return _get_columns_to_convert_given_schema(df, schema, preserve_index) | |
column_names = [] | |
index_levels = ( | |
_get_index_level_values(df.index) if preserve_index is not False | |
else [] | |
) | |
columns_to_convert = [] | |
convert_fields = [] | |
for name in columns: | |
col = df[name] | |
name = _column_name_to_strings(name) | |
if _pandas_api.is_sparse(col): | |
raise TypeError( | |
"Sparse pandas data (column {}) not supported.".format(name)) | |
columns_to_convert.append(col) | |
convert_fields.append(None) | |
column_names.append(name) | |
index_descriptors = [] | |
index_column_names = [] | |
for i, index_level in enumerate(index_levels): | |
name = _index_level_name(index_level, i, column_names) | |
if (isinstance(index_level, _pandas_api.pd.RangeIndex) and | |
preserve_index is None): | |
descr = _get_range_index_descriptor(index_level) | |
else: | |
columns_to_convert.append(index_level) | |
convert_fields.append(None) | |
descr = name | |
index_column_names.append(name) | |
index_descriptors.append(descr) | |
all_names = column_names + index_column_names | |
# all_names : all of the columns in the resulting table including the data | |
# columns and serialized index columns | |
# column_names : the names of the data columns | |
# index_column_names : the names of the serialized index columns | |
# index_descriptors : descriptions of each index to be used for | |
# reconstruction | |
# index_levels : the extracted index level values | |
# columns_to_convert : assembled raw data (both data columns and indexes) | |
# to be converted to Arrow format | |
# columns_fields : specified column to use for coercion / casting | |
# during serialization, if a Schema was provided | |
return (all_names, column_names, index_column_names, index_descriptors, | |
index_levels, columns_to_convert, convert_fields) | |
def _get_columns_to_convert_given_schema(df, schema, preserve_index): | |
""" | |
Specialized version of _get_columns_to_convert in case a Schema is | |
specified. | |
In that case, the Schema is used as the single point of truth for the | |
table structure (types, which columns are included, order of columns, ...). | |
""" | |
column_names = [] | |
columns_to_convert = [] | |
convert_fields = [] | |
index_descriptors = [] | |
index_column_names = [] | |
index_levels = [] | |
for name in schema.names: | |
try: | |
col = df[name] | |
is_index = False | |
except KeyError: | |
try: | |
col = _get_index_level(df, name) | |
except (KeyError, IndexError): | |
# name not found as index level | |
raise KeyError( | |
"name '{}' present in the specified schema is not found " | |
"in the columns or index".format(name)) | |
if preserve_index is False: | |
raise ValueError( | |
"name '{}' present in the specified schema corresponds " | |
"to the index, but 'preserve_index=False' was " | |
"specified".format(name)) | |
elif (preserve_index is None and | |
isinstance(col, _pandas_api.pd.RangeIndex)): | |
raise ValueError( | |
"name '{}' is present in the schema, but it is a " | |
"RangeIndex which will not be converted as a column " | |
"in the Table, but saved as metadata-only not in " | |
"columns. Specify 'preserve_index=True' to force it " | |
"being added as a column, or remove it from the " | |
"specified schema".format(name)) | |
is_index = True | |
name = _column_name_to_strings(name) | |
if _pandas_api.is_sparse(col): | |
raise TypeError( | |
"Sparse pandas data (column {}) not supported.".format(name)) | |
field = schema.field(name) | |
columns_to_convert.append(col) | |
convert_fields.append(field) | |
column_names.append(name) | |
if is_index: | |
index_column_names.append(name) | |
index_descriptors.append(name) | |
index_levels.append(col) | |
all_names = column_names + index_column_names | |
return (all_names, column_names, index_column_names, index_descriptors, | |
index_levels, columns_to_convert, convert_fields) | |
def _get_index_level(df, name): | |
""" | |
Get the index level of a DataFrame given 'name' (column name in an arrow | |
Schema). | |
""" | |
key = name | |
if name not in df.index.names and _is_generated_index_name(name): | |
# we know we have an autogenerated name => extract number and get | |
# the index level positionally | |
key = int(name[len("__index_level_"):-2]) | |
return df.index.get_level_values(key) | |
def _level_name(name): | |
# preserve type when default serializable, otherwise str it | |
try: | |
json.dumps(name) | |
return name | |
except TypeError: | |
return str(name) | |
def _get_range_index_descriptor(level): | |
# public start/stop/step attributes added in pandas 0.25.0 | |
return { | |
'kind': 'range', | |
'name': _level_name(level.name), | |
'start': _pandas_api.get_rangeindex_attribute(level, 'start'), | |
'stop': _pandas_api.get_rangeindex_attribute(level, 'stop'), | |
'step': _pandas_api.get_rangeindex_attribute(level, 'step') | |
} | |
def _get_index_level_values(index): | |
n = len(getattr(index, 'levels', [index])) | |
return [index.get_level_values(i) for i in range(n)] | |
def _resolve_columns_of_interest(df, schema, columns): | |
if schema is not None and columns is not None: | |
raise ValueError('Schema and columns arguments are mutually ' | |
'exclusive, pass only one of them') | |
elif schema is not None: | |
columns = schema.names | |
elif columns is not None: | |
columns = [c for c in columns if c in df.columns] | |
else: | |
columns = df.columns | |
return columns | |
def dataframe_to_types(df, preserve_index, columns=None): | |
(all_names, | |
column_names, | |
_, | |
index_descriptors, | |
index_columns, | |
columns_to_convert, | |
_) = _get_columns_to_convert(df, None, preserve_index, columns) | |
types = [] | |
# If pandas knows type, skip conversion | |
for c in columns_to_convert: | |
values = c.values | |
if _pandas_api.is_categorical(values): | |
type_ = pa.array(c, from_pandas=True).type | |
elif _pandas_api.is_extension_array_dtype(values): | |
empty = c.head(0) if isinstance( | |
c, _pandas_api.pd.Series) else c[:0] | |
type_ = pa.array(empty, from_pandas=True).type | |
else: | |
values, type_ = get_datetimetz_type(values, c.dtype, None) | |
type_ = pa.lib._ndarray_to_arrow_type(values, type_) | |
if type_ is None: | |
type_ = pa.array(c, from_pandas=True).type | |
types.append(type_) | |
metadata = construct_metadata( | |
columns_to_convert, df, column_names, index_columns, | |
index_descriptors, preserve_index, types | |
) | |
return all_names, types, metadata | |
def dataframe_to_arrays(df, schema, preserve_index, nthreads=1, columns=None, | |
safe=True): | |
(all_names, | |
column_names, | |
index_column_names, | |
index_descriptors, | |
index_columns, | |
columns_to_convert, | |
convert_fields) = _get_columns_to_convert(df, schema, preserve_index, | |
columns) | |
# NOTE(wesm): If nthreads=None, then we use a heuristic to decide whether | |
# using a thread pool is worth it. Currently the heuristic is whether the | |
# nrows > 100 * ncols and ncols > 1. | |
if nthreads is None: | |
nrows, ncols = len(df), len(df.columns) | |
if nrows > ncols * 100 and ncols > 1: | |
nthreads = pa.cpu_count() | |
else: | |
nthreads = 1 | |
def convert_column(col, field): | |
if field is None: | |
field_nullable = True | |
type_ = None | |
else: | |
field_nullable = field.nullable | |
type_ = field.type | |
try: | |
result = pa.array(col, type=type_, from_pandas=True, safe=safe) | |
except (pa.ArrowInvalid, | |
pa.ArrowNotImplementedError, | |
pa.ArrowTypeError) as e: | |
e.args += ("Conversion failed for column {!s} with type {!s}" | |
.format(col.name, col.dtype),) | |
raise e | |
if not field_nullable and result.null_count > 0: | |
raise ValueError("Field {} was non-nullable but pandas column " | |
"had {} null values".format(str(field), | |
result.null_count)) | |
return result | |
def _can_definitely_zero_copy(arr): | |
return (isinstance(arr, np.ndarray) and | |
arr.flags.contiguous and | |
issubclass(arr.dtype.type, np.integer)) | |
if nthreads == 1: | |
arrays = [convert_column(c, f) | |
for c, f in zip(columns_to_convert, convert_fields)] | |
else: | |
arrays = [] | |
with futures.ThreadPoolExecutor(nthreads) as executor: | |
for c, f in zip(columns_to_convert, convert_fields): | |
if _can_definitely_zero_copy(c.values): | |
arrays.append(convert_column(c, f)) | |
else: | |
arrays.append(executor.submit(convert_column, c, f)) | |
for i, maybe_fut in enumerate(arrays): | |
if isinstance(maybe_fut, futures.Future): | |
arrays[i] = maybe_fut.result() | |
types = [x.type for x in arrays] | |
if schema is None: | |
fields = [] | |
for name, type_ in zip(all_names, types): | |
name = name if name is not None else 'None' | |
fields.append(pa.field(name, type_)) | |
schema = pa.schema(fields) | |
pandas_metadata = construct_metadata( | |
columns_to_convert, df, column_names, index_columns, | |
index_descriptors, preserve_index, types | |
) | |
metadata = deepcopy(schema.metadata) if schema.metadata else dict() | |
metadata.update(pandas_metadata) | |
schema = schema.with_metadata(metadata) | |
# If dataframe is empty but with RangeIndex -> | |
# remember the length of the indexes | |
n_rows = None | |
if len(arrays) == 0: | |
try: | |
kind = index_descriptors[0]["kind"] | |
if kind == "range": | |
start = index_descriptors[0]["start"] | |
stop = index_descriptors[0]["stop"] | |
step = index_descriptors[0]["step"] | |
n_rows = len(range(start, stop, step)) | |
except IndexError: | |
pass | |
return arrays, schema, n_rows | |
def get_datetimetz_type(values, dtype, type_): | |
if values.dtype.type != np.datetime64: | |
return values, type_ | |
if _pandas_api.is_datetimetz(dtype) and type_ is None: | |
# If no user type passed, construct a tz-aware timestamp type | |
tz = dtype.tz | |
unit = dtype.unit | |
type_ = pa.timestamp(unit, tz) | |
elif type_ is None: | |
# Trust the NumPy dtype | |
type_ = pa.from_numpy_dtype(values.dtype) | |
return values, type_ | |
# ---------------------------------------------------------------------- | |
# Converting pyarrow.Table efficiently to pandas.DataFrame | |
def _reconstruct_block(item, columns=None, extension_columns=None): | |
""" | |
Construct a pandas Block from the `item` dictionary coming from pyarrow's | |
serialization or returned by arrow::python::ConvertTableToPandas. | |
This function takes care of converting dictionary types to pandas | |
categorical, Timestamp-with-timezones to the proper pandas Block, and | |
conversion to pandas ExtensionBlock | |
Parameters | |
---------- | |
item : dict | |
For basic types, this is a dictionary in the form of | |
{'block': np.ndarray of values, 'placement': pandas block placement}. | |
Additional keys are present for other types (dictionary, timezone, | |
object). | |
columns : | |
Column names of the table being constructed, used for extension types | |
extension_columns : dict | |
Dictionary of {column_name: pandas_dtype} that includes all columns | |
and corresponding dtypes that will be converted to a pandas | |
ExtensionBlock. | |
Returns | |
------- | |
pandas Block | |
""" | |
import pandas.core.internals as _int | |
block_arr = item.get('block', None) | |
placement = item['placement'] | |
if 'dictionary' in item: | |
cat = _pandas_api.categorical_type.from_codes( | |
block_arr, categories=item['dictionary'], | |
ordered=item['ordered']) | |
block = _int.make_block(cat, placement=placement) | |
elif 'timezone' in item: | |
unit, _ = np.datetime_data(block_arr.dtype) | |
dtype = make_datetimetz(unit, item['timezone']) | |
if _pandas_api.is_ge_v21(): | |
pd_arr = _pandas_api.pd.array( | |
block_arr.view("int64"), dtype=dtype, copy=False | |
) | |
block = _int.make_block(pd_arr, placement=placement) | |
else: | |
block = _int.make_block(block_arr, placement=placement, | |
klass=_int.DatetimeTZBlock, | |
dtype=dtype) | |
elif 'py_array' in item: | |
# create ExtensionBlock | |
arr = item['py_array'] | |
assert len(placement) == 1 | |
name = columns[placement[0]] | |
pandas_dtype = extension_columns[name] | |
if not hasattr(pandas_dtype, '__from_arrow__'): | |
raise ValueError("This column does not support to be converted " | |
"to a pandas ExtensionArray") | |
pd_ext_arr = pandas_dtype.__from_arrow__(arr) | |
block = _int.make_block(pd_ext_arr, placement=placement) | |
else: | |
block = _int.make_block(block_arr, placement=placement) | |
return block | |
def make_datetimetz(unit, tz): | |
if _pandas_api.is_v1(): | |
unit = 'ns' # ARROW-3789: Coerce date/timestamp types to datetime64[ns] | |
tz = pa.lib.string_to_tzinfo(tz) | |
return _pandas_api.datetimetz_type(unit, tz=tz) | |
def table_to_dataframe( | |
options, table, categories=None, ignore_metadata=False, types_mapper=None | |
): | |
from pandas.core.internals import BlockManager | |
from pandas import DataFrame | |
all_columns = [] | |
column_indexes = [] | |
pandas_metadata = table.schema.pandas_metadata | |
if not ignore_metadata and pandas_metadata is not None: | |
all_columns = pandas_metadata['columns'] | |
column_indexes = pandas_metadata.get('column_indexes', []) | |
index_descriptors = pandas_metadata['index_columns'] | |
table = _add_any_metadata(table, pandas_metadata) | |
table, index = _reconstruct_index(table, index_descriptors, | |
all_columns, types_mapper) | |
ext_columns_dtypes = _get_extension_dtypes( | |
table, all_columns, types_mapper) | |
else: | |
index = _pandas_api.pd.RangeIndex(table.num_rows) | |
ext_columns_dtypes = _get_extension_dtypes(table, [], types_mapper) | |
_check_data_column_metadata_consistency(all_columns) | |
columns = _deserialize_column_index(table, all_columns, column_indexes) | |
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes) | |
axes = [columns, index] | |
mgr = BlockManager(blocks, axes) | |
if _pandas_api.is_ge_v21(): | |
df = DataFrame._from_mgr(mgr, mgr.axes) | |
else: | |
df = DataFrame(mgr) | |
return df | |
# Set of the string repr of all numpy dtypes that can be stored in a pandas | |
# dataframe (complex not included since not supported by Arrow) | |
_pandas_supported_numpy_types = { | |
"int8", "int16", "int32", "int64", | |
"uint8", "uint16", "uint32", "uint64", | |
"float16", "float32", "float64", | |
"object", "bool" | |
} | |
def _get_extension_dtypes(table, columns_metadata, types_mapper=None): | |
""" | |
Based on the stored column pandas metadata and the extension types | |
in the arrow schema, infer which columns should be converted to a | |
pandas extension dtype. | |
The 'numpy_type' field in the column metadata stores the string | |
representation of the original pandas dtype (and, despite its name, | |
not the 'pandas_type' field). | |
Based on this string representation, a pandas/numpy dtype is constructed | |
and then we can check if this dtype supports conversion from arrow. | |
""" | |
ext_columns = {} | |
# older pandas version that does not yet support extension dtypes | |
if _pandas_api.extension_dtype is None: | |
return ext_columns | |
# infer the extension columns from the pandas metadata | |
for col_meta in columns_metadata: | |
try: | |
name = col_meta['field_name'] | |
except KeyError: | |
name = col_meta['name'] | |
dtype = col_meta['numpy_type'] | |
if dtype not in _pandas_supported_numpy_types: | |
# pandas_dtype is expensive, so avoid doing this for types | |
# that are certainly numpy dtypes | |
pandas_dtype = _pandas_api.pandas_dtype(dtype) | |
if isinstance(pandas_dtype, _pandas_api.extension_dtype): | |
if hasattr(pandas_dtype, "__from_arrow__"): | |
ext_columns[name] = pandas_dtype | |
# infer from extension type in the schema | |
for field in table.schema: | |
typ = field.type | |
if isinstance(typ, pa.BaseExtensionType): | |
try: | |
pandas_dtype = typ.to_pandas_dtype() | |
except NotImplementedError: | |
pass | |
else: | |
ext_columns[field.name] = pandas_dtype | |
# use the specified mapping of built-in arrow types to pandas dtypes | |
if types_mapper: | |
for field in table.schema: | |
typ = field.type | |
pandas_dtype = types_mapper(typ) | |
if pandas_dtype is not None: | |
ext_columns[field.name] = pandas_dtype | |
return ext_columns | |
def _check_data_column_metadata_consistency(all_columns): | |
# It can never be the case in a released version of pyarrow that | |
# c['name'] is None *and* 'field_name' is not a key in the column metadata, | |
# because the change to allow c['name'] to be None and the change to add | |
# 'field_name' are in the same release (0.8.0) | |
assert all( | |
(c['name'] is None and 'field_name' in c) or c['name'] is not None | |
for c in all_columns | |
) | |
def _deserialize_column_index(block_table, all_columns, column_indexes): | |
column_strings = [frombytes(x) if isinstance(x, bytes) else x | |
for x in block_table.column_names] | |
if all_columns: | |
columns_name_dict = { | |
c.get('field_name', _column_name_to_strings(c['name'])): c['name'] | |
for c in all_columns | |
} | |
columns_values = [ | |
columns_name_dict.get(name, name) for name in column_strings | |
] | |
else: | |
columns_values = column_strings | |
# If we're passed multiple column indexes then evaluate with | |
# ast.literal_eval, since the column index values show up as a list of | |
# tuples | |
to_pair = ast.literal_eval if len(column_indexes) > 1 else lambda x: (x,) | |
# Create the column index | |
# Construct the base index | |
if not columns_values: | |
columns = _pandas_api.pd.Index(columns_values) | |
else: | |
columns = _pandas_api.pd.MultiIndex.from_tuples( | |
list(map(to_pair, columns_values)), | |
names=[col_index['name'] for col_index in column_indexes] or None, | |
) | |
# if we're reconstructing the index | |
if len(column_indexes) > 0: | |
columns = _reconstruct_columns_from_metadata(columns, column_indexes) | |
# ARROW-1751: flatten a single level column MultiIndex for pandas 0.21.0 | |
columns = _flatten_single_level_multiindex(columns) | |
return columns | |
def _reconstruct_index(table, index_descriptors, all_columns, types_mapper=None): | |
# 0. 'field_name' is the name of the column in the arrow Table | |
# 1. 'name' is the user-facing name of the column, that is, it came from | |
# pandas | |
# 2. 'field_name' and 'name' differ for index columns | |
# 3. We fall back on c['name'] for backwards compatibility | |
field_name_to_metadata = { | |
c.get('field_name', c['name']): c | |
for c in all_columns | |
} | |
# Build up a list of index columns and names while removing those columns | |
# from the original table | |
index_arrays = [] | |
index_names = [] | |
result_table = table | |
for descr in index_descriptors: | |
if isinstance(descr, str): | |
result_table, index_level, index_name = _extract_index_level( | |
table, result_table, descr, field_name_to_metadata, types_mapper) | |
if index_level is None: | |
# ARROW-1883: the serialized index column was not found | |
continue | |
elif descr['kind'] == 'range': | |
index_name = descr['name'] | |
index_level = _pandas_api.pd.RangeIndex(descr['start'], | |
descr['stop'], | |
step=descr['step'], | |
name=index_name) | |
if len(index_level) != len(table): | |
# Possibly the result of munged metadata | |
continue | |
else: | |
raise ValueError("Unrecognized index kind: {}" | |
.format(descr['kind'])) | |
index_arrays.append(index_level) | |
index_names.append(index_name) | |
pd = _pandas_api.pd | |
# Reconstruct the row index | |
if len(index_arrays) > 1: | |
index = pd.MultiIndex.from_arrays(index_arrays, names=index_names) | |
elif len(index_arrays) == 1: | |
index = index_arrays[0] | |
if not isinstance(index, pd.Index): | |
# Box anything that wasn't boxed above | |
index = pd.Index(index, name=index_names[0]) | |
else: | |
index = pd.RangeIndex(table.num_rows) | |
return result_table, index | |
def _extract_index_level(table, result_table, field_name, | |
field_name_to_metadata, types_mapper=None): | |
logical_name = field_name_to_metadata[field_name]['name'] | |
index_name = _backwards_compatible_index_name(field_name, logical_name) | |
i = table.schema.get_field_index(field_name) | |
if i == -1: | |
# The serialized index column was removed by the user | |
return result_table, None, None | |
pd = _pandas_api.pd | |
col = table.column(i) | |
values = col.to_pandas(types_mapper=types_mapper).values | |
if hasattr(values, 'flags') and not values.flags.writeable: | |
# ARROW-1054: in pandas 0.19.2, factorize will reject | |
# non-writeable arrays when calling MultiIndex.from_arrays | |
values = values.copy() | |
if isinstance(col.type, pa.lib.TimestampType) and col.type.tz is not None: | |
index_level = make_tz_aware(pd.Series(values, copy=False), col.type.tz) | |
else: | |
index_level = pd.Series(values, dtype=values.dtype, copy=False) | |
result_table = result_table.remove_column( | |
result_table.schema.get_field_index(field_name) | |
) | |
return result_table, index_level, index_name | |
def _backwards_compatible_index_name(raw_name, logical_name): | |
"""Compute the name of an index column that is compatible with older | |
versions of :mod:`pyarrow`. | |
Parameters | |
---------- | |
raw_name : str | |
logical_name : str | |
Returns | |
------- | |
result : str | |
Notes | |
----- | |
* Part of :func:`~pyarrow.pandas_compat.table_to_blockmanager` | |
""" | |
# Part of table_to_blockmanager | |
if raw_name == logical_name and _is_generated_index_name(raw_name): | |
return None | |
else: | |
return logical_name | |
def _is_generated_index_name(name): | |
pattern = r'^__index_level_\d+__$' | |
return re.match(pattern, name) is not None | |
_pandas_logical_type_map = { | |
'date': 'datetime64[D]', | |
'datetime': 'datetime64[ns]', | |
'datetimetz': 'datetime64[ns]', | |
'unicode': np.str_, | |
'bytes': np.bytes_, | |
'string': np.str_, | |
'integer': np.int64, | |
'floating': np.float64, | |
'empty': np.object_, | |
} | |
def _pandas_type_to_numpy_type(pandas_type): | |
"""Get the numpy dtype that corresponds to a pandas type. | |
Parameters | |
---------- | |
pandas_type : str | |
The result of a call to pandas.lib.infer_dtype. | |
Returns | |
------- | |
dtype : np.dtype | |
The dtype that corresponds to `pandas_type`. | |
""" | |
try: | |
return _pandas_logical_type_map[pandas_type] | |
except KeyError: | |
if 'mixed' in pandas_type: | |
# catching 'mixed', 'mixed-integer' and 'mixed-integer-float' | |
return np.object_ | |
return np.dtype(pandas_type) | |
def _get_multiindex_codes(mi): | |
if isinstance(mi, _pandas_api.pd.MultiIndex): | |
return mi.codes | |
else: | |
return None | |
def _reconstruct_columns_from_metadata(columns, column_indexes): | |
"""Construct a pandas MultiIndex from `columns` and column index metadata | |
in `column_indexes`. | |
Parameters | |
---------- | |
columns : List[pd.Index] | |
The columns coming from a pyarrow.Table | |
column_indexes : List[Dict[str, str]] | |
The column index metadata deserialized from the JSON schema metadata | |
in a :class:`~pyarrow.Table`. | |
Returns | |
------- | |
result : MultiIndex | |
The index reconstructed using `column_indexes` metadata with levels of | |
the correct type. | |
Notes | |
----- | |
* Part of :func:`~pyarrow.pandas_compat.table_to_blockmanager` | |
""" | |
pd = _pandas_api.pd | |
# Get levels and labels, and provide sane defaults if the index has a | |
# single level to avoid if/else spaghetti. | |
levels = getattr(columns, 'levels', None) or [columns] | |
labels = _get_multiindex_codes(columns) or [ | |
pd.RangeIndex(len(level)) for level in levels | |
] | |
# Convert each level to the dtype provided in the metadata | |
levels_dtypes = [ | |
(level, col_index.get('pandas_type', str(level.dtype)), | |
col_index.get('numpy_type', None)) | |
for level, col_index in zip_longest( | |
levels, column_indexes, fillvalue={} | |
) | |
] | |
new_levels = [] | |
encoder = operator.methodcaller('encode', 'UTF-8') | |
for level, pandas_dtype, numpy_dtype in levels_dtypes: | |
dtype = _pandas_type_to_numpy_type(pandas_dtype) | |
# Since our metadata is UTF-8 encoded, Python turns things that were | |
# bytes into unicode strings when json.loads-ing them. We need to | |
# convert them back to bytes to preserve metadata. | |
if dtype == np.bytes_: | |
level = level.map(encoder) | |
# ARROW-13756: if index is timezone aware DataTimeIndex | |
if pandas_dtype == "datetimetz": | |
tz = pa.lib.string_to_tzinfo( | |
column_indexes[0]['metadata']['timezone']) | |
level = pd.to_datetime(level, utc=True).tz_convert(tz) | |
elif level.dtype != dtype: | |
level = level.astype(dtype) | |
# ARROW-9096: if original DataFrame was upcast we keep that | |
if level.dtype != numpy_dtype and pandas_dtype != "datetimetz": | |
level = level.astype(numpy_dtype) | |
new_levels.append(level) | |
return pd.MultiIndex(new_levels, labels, names=columns.names) | |
def _table_to_blocks(options, block_table, categories, extension_columns): | |
# Part of table_to_blockmanager | |
# Convert an arrow table to Block from the internal pandas API | |
columns = block_table.column_names | |
result = pa.lib.table_to_blocks(options, block_table, categories, | |
list(extension_columns.keys())) | |
return [_reconstruct_block(item, columns, extension_columns) | |
for item in result] | |
def _flatten_single_level_multiindex(index): | |
pd = _pandas_api.pd | |
if isinstance(index, pd.MultiIndex) and index.nlevels == 1: | |
levels, = index.levels | |
labels, = _get_multiindex_codes(index) | |
# ARROW-9096: use levels.dtype to match cast with original DataFrame | |
dtype = levels.dtype | |
# Cheaply check that we do not somehow have duplicate column names | |
if not index.is_unique: | |
raise ValueError('Found non-unique column index') | |
return pd.Index( | |
[levels[_label] if _label != -1 else None for _label in labels], | |
dtype=dtype, | |
name=index.names[0] | |
) | |
return index | |
def _add_any_metadata(table, pandas_metadata): | |
modified_columns = {} | |
modified_fields = {} | |
schema = table.schema | |
index_columns = pandas_metadata['index_columns'] | |
# only take index columns into account if they are an actual table column | |
index_columns = [idx_col for idx_col in index_columns | |
if isinstance(idx_col, str)] | |
n_index_levels = len(index_columns) | |
n_columns = len(pandas_metadata['columns']) - n_index_levels | |
# Add time zones | |
for i, col_meta in enumerate(pandas_metadata['columns']): | |
raw_name = col_meta.get('field_name') | |
if not raw_name: | |
# deal with metadata written with arrow < 0.8 or fastparquet | |
raw_name = col_meta['name'] | |
if i >= n_columns: | |
# index columns | |
raw_name = index_columns[i - n_columns] | |
if raw_name is None: | |
raw_name = 'None' | |
idx = schema.get_field_index(raw_name) | |
if idx != -1: | |
if col_meta['pandas_type'] == 'datetimetz': | |
col = table[idx] | |
if not isinstance(col.type, pa.lib.TimestampType): | |
continue | |
metadata = col_meta['metadata'] | |
if not metadata: | |
continue | |
metadata_tz = metadata.get('timezone') | |
if metadata_tz and metadata_tz != col.type.tz: | |
converted = col.to_pandas() | |
tz_aware_type = pa.timestamp('ns', tz=metadata_tz) | |
with_metadata = pa.Array.from_pandas(converted, | |
type=tz_aware_type) | |
modified_fields[idx] = pa.field(schema[idx].name, | |
tz_aware_type) | |
modified_columns[idx] = with_metadata | |
if len(modified_columns) > 0: | |
columns = [] | |
fields = [] | |
for i in range(len(table.schema)): | |
if i in modified_columns: | |
columns.append(modified_columns[i]) | |
fields.append(modified_fields[i]) | |
else: | |
columns.append(table[i]) | |
fields.append(table.schema[i]) | |
return pa.Table.from_arrays(columns, schema=pa.schema(fields)) | |
else: | |
return table | |
# ---------------------------------------------------------------------- | |
# Helper functions used in lib | |
def make_tz_aware(series, tz): | |
""" | |
Make a datetime64 Series timezone-aware for the given tz | |
""" | |
tz = pa.lib.string_to_tzinfo(tz) | |
series = (series.dt.tz_localize('utc') | |
.dt.tz_convert(tz)) | |
return series | |