|
import os |
|
from typing import Dict, Optional, Union |
|
|
|
import numpy as np |
|
|
|
import paddle |
|
from safetensors import numpy |
|
|
|
|
|
def save(tensors: Dict[str, paddle.Tensor], metadata: Optional[Dict[str, str]] = None) -> bytes: |
|
""" |
|
Saves a dictionary of tensors into raw bytes in safetensors format. |
|
|
|
Args: |
|
tensors (`Dict[str, paddle.Tensor]`): |
|
The incoming tensors. Tensors need to be contiguous and dense. |
|
metadata (`Dict[str, str]`, *optional*, defaults to `None`): |
|
Optional text only metadata you might want to save in your header. |
|
For instance it can be useful to specify more about the underlying |
|
tensors. This is purely informative and does not affect tensor loading. |
|
|
|
Returns: |
|
`bytes`: The raw bytes representing the format |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.paddle import save |
|
import paddle |
|
|
|
tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} |
|
byte_data = save(tensors) |
|
``` |
|
""" |
|
np_tensors = _paddle2np(tensors) |
|
return numpy.save(np_tensors, metadata=metadata) |
|
|
|
|
|
def save_file( |
|
tensors: Dict[str, paddle.Tensor], |
|
filename: Union[str, os.PathLike], |
|
metadata: Optional[Dict[str, str]] = None, |
|
) -> None: |
|
""" |
|
Saves a dictionary of tensors into raw bytes in safetensors format. |
|
|
|
Args: |
|
tensors (`Dict[str, paddle.Tensor]`): |
|
The incoming tensors. Tensors need to be contiguous and dense. |
|
filename (`str`, or `os.PathLike`)): |
|
The filename we're saving into. |
|
metadata (`Dict[str, str]`, *optional*, defaults to `None`): |
|
Optional text only metadata you might want to save in your header. |
|
For instance it can be useful to specify more about the underlying |
|
tensors. This is purely informative and does not affect tensor loading. |
|
|
|
Returns: |
|
`None` |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.paddle import save_file |
|
import paddle |
|
|
|
tensors = {"embedding": paddle.zeros((512, 1024)), "attention": paddle.zeros((256, 256))} |
|
save_file(tensors, "model.safetensors") |
|
``` |
|
""" |
|
np_tensors = _paddle2np(tensors) |
|
return numpy.save_file(np_tensors, filename, metadata=metadata) |
|
|
|
|
|
def load(data: bytes, device: str = "cpu") -> Dict[str, paddle.Tensor]: |
|
""" |
|
Loads a safetensors file into paddle format from pure bytes. |
|
|
|
Args: |
|
data (`bytes`): |
|
The content of a safetensors file |
|
|
|
Returns: |
|
`Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` on cpu |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.paddle import load |
|
|
|
file_path = "./my_folder/bert.safetensors" |
|
with open(file_path, "rb") as f: |
|
data = f.read() |
|
|
|
loaded = load(data) |
|
``` |
|
""" |
|
flat = numpy.load(data) |
|
return _np2paddle(flat, device) |
|
|
|
|
|
def load_file(filename: Union[str, os.PathLike], device="cpu") -> Dict[str, paddle.Tensor]: |
|
""" |
|
Loads a safetensors file into paddle format. |
|
|
|
Args: |
|
filename (`str`, or `os.PathLike`)): |
|
The name of the file which contains the tensors |
|
device (`Dict[str, any]`, *optional*, defaults to `cpu`): |
|
The device where the tensors need to be located after load. |
|
available options are all regular paddle device locations |
|
|
|
Returns: |
|
`Dict[str, paddle.Tensor]`: dictionary that contains name as key, value as `paddle.Tensor` |
|
|
|
Example: |
|
|
|
```python |
|
from safetensors.paddle import load_file |
|
|
|
file_path = "./my_folder/bert.safetensors" |
|
loaded = load_file(file_path) |
|
``` |
|
""" |
|
flat = numpy.load_file(filename) |
|
output = _np2paddle(flat, device) |
|
return output |
|
|
|
|
|
def _np2paddle(numpy_dict: Dict[str, np.ndarray], device: str = "cpu") -> Dict[str, paddle.Tensor]: |
|
for k, v in numpy_dict.items(): |
|
numpy_dict[k] = paddle.to_tensor(v, place=device) |
|
return numpy_dict |
|
|
|
|
|
def _paddle2np(paddle_dict: Dict[str, paddle.Tensor]) -> Dict[str, np.array]: |
|
for k, v in paddle_dict.items(): |
|
paddle_dict[k] = v.detach().cpu().numpy() |
|
return paddle_dict |
|
|