|
""" |
|
The classes used here are for the internal use of assumptions system |
|
only and should not be used anywhere else as these do not possess the |
|
signatures common to SymPy objects. For general use of logic constructs |
|
please refer to sympy.logic classes And, Or, Not, etc. |
|
""" |
|
from itertools import combinations, product, zip_longest |
|
from sympy.assumptions.assume import AppliedPredicate, Predicate |
|
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le |
|
from sympy.core.singleton import S |
|
from sympy.logic.boolalg import Or, And, Not, Xnor |
|
from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor) |
|
|
|
|
|
class Literal: |
|
""" |
|
The smallest element of a CNF object. |
|
|
|
Parameters |
|
========== |
|
|
|
lit : Boolean expression |
|
|
|
is_Not : bool |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q |
|
>>> from sympy.assumptions.cnf import Literal |
|
>>> from sympy.abc import x |
|
>>> Literal(Q.even(x)) |
|
Literal(Q.even(x), False) |
|
>>> Literal(~Q.even(x)) |
|
Literal(Q.even(x), True) |
|
""" |
|
|
|
def __new__(cls, lit, is_Not=False): |
|
if isinstance(lit, Not): |
|
lit = lit.args[0] |
|
is_Not = True |
|
elif isinstance(lit, (AND, OR, Literal)): |
|
return ~lit if is_Not else lit |
|
obj = super().__new__(cls) |
|
obj.lit = lit |
|
obj.is_Not = is_Not |
|
return obj |
|
|
|
@property |
|
def arg(self): |
|
return self.lit |
|
|
|
def rcall(self, expr): |
|
if callable(self.lit): |
|
lit = self.lit(expr) |
|
else: |
|
try: |
|
lit = self.lit.apply(expr) |
|
except AttributeError: |
|
lit = self.lit.rcall(expr) |
|
return type(self)(lit, self.is_Not) |
|
|
|
def __invert__(self): |
|
is_Not = not self.is_Not |
|
return Literal(self.lit, is_Not) |
|
|
|
def __str__(self): |
|
return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not) |
|
|
|
__repr__ = __str__ |
|
|
|
def __eq__(self, other): |
|
return self.arg == other.arg and self.is_Not == other.is_Not |
|
|
|
def __hash__(self): |
|
h = hash((type(self).__name__, self.arg, self.is_Not)) |
|
return h |
|
|
|
|
|
class OR: |
|
""" |
|
A low-level implementation for Or |
|
""" |
|
def __init__(self, *args): |
|
self._args = args |
|
|
|
@property |
|
def args(self): |
|
return sorted(self._args, key=str) |
|
|
|
def rcall(self, expr): |
|
return type(self)(*[arg.rcall(expr) |
|
for arg in self._args |
|
]) |
|
|
|
def __invert__(self): |
|
return AND(*[~arg for arg in self._args]) |
|
|
|
def __hash__(self): |
|
return hash((type(self).__name__,) + tuple(self.args)) |
|
|
|
def __eq__(self, other): |
|
return self.args == other.args |
|
|
|
def __str__(self): |
|
s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')' |
|
return s |
|
|
|
__repr__ = __str__ |
|
|
|
|
|
class AND: |
|
""" |
|
A low-level implementation for And |
|
""" |
|
def __init__(self, *args): |
|
self._args = args |
|
|
|
def __invert__(self): |
|
return OR(*[~arg for arg in self._args]) |
|
|
|
@property |
|
def args(self): |
|
return sorted(self._args, key=str) |
|
|
|
def rcall(self, expr): |
|
return type(self)(*[arg.rcall(expr) |
|
for arg in self._args |
|
]) |
|
|
|
def __hash__(self): |
|
return hash((type(self).__name__,) + tuple(self.args)) |
|
|
|
def __eq__(self, other): |
|
return self.args == other.args |
|
|
|
def __str__(self): |
|
s = '('+' & '.join([str(arg) for arg in self.args])+')' |
|
return s |
|
|
|
__repr__ = __str__ |
|
|
|
|
|
def to_NNF(expr, composite_map=None): |
|
""" |
|
Generates the Negation Normal Form of any boolean expression in terms |
|
of AND, OR, and Literal objects. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, Eq |
|
>>> from sympy.assumptions.cnf import to_NNF |
|
>>> from sympy.abc import x, y |
|
>>> expr = Q.even(x) & ~Q.positive(x) |
|
>>> to_NNF(expr) |
|
(Literal(Q.even(x), False) & Literal(Q.positive(x), True)) |
|
|
|
Supported boolean objects are converted to corresponding predicates. |
|
|
|
>>> to_NNF(Eq(x, y)) |
|
Literal(Q.eq(x, y), False) |
|
|
|
If ``composite_map`` argument is given, ``to_NNF`` decomposes the |
|
specified predicate into a combination of primitive predicates. |
|
|
|
>>> cmap = {Q.nonpositive: Q.negative | Q.zero} |
|
>>> to_NNF(Q.nonpositive, cmap) |
|
(Literal(Q.negative, False) | Literal(Q.zero, False)) |
|
>>> to_NNF(Q.nonpositive(x), cmap) |
|
(Literal(Q.negative(x), False) | Literal(Q.zero(x), False)) |
|
""" |
|
from sympy.assumptions.ask import Q |
|
|
|
if composite_map is None: |
|
composite_map = {} |
|
|
|
|
|
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} |
|
if type(expr) in binrelpreds: |
|
pred = binrelpreds[type(expr)] |
|
expr = pred(*expr.args) |
|
|
|
if isinstance(expr, Not): |
|
arg = expr.args[0] |
|
tmp = to_NNF(arg, composite_map) |
|
return ~tmp |
|
|
|
if isinstance(expr, Or): |
|
return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)]) |
|
|
|
if isinstance(expr, And): |
|
return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)]) |
|
|
|
if isinstance(expr, Nand): |
|
tmp = AND(*[to_NNF(x, composite_map) for x in expr.args]) |
|
return ~tmp |
|
|
|
if isinstance(expr, Nor): |
|
tmp = OR(*[to_NNF(x, composite_map) for x in expr.args]) |
|
return ~tmp |
|
|
|
if isinstance(expr, Xor): |
|
cnfs = [] |
|
for i in range(0, len(expr.args) + 1, 2): |
|
for neg in combinations(expr.args, i): |
|
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map) |
|
for s in expr.args] |
|
cnfs.append(OR(*clause)) |
|
return AND(*cnfs) |
|
|
|
if isinstance(expr, Xnor): |
|
cnfs = [] |
|
for i in range(0, len(expr.args) + 1, 2): |
|
for neg in combinations(expr.args, i): |
|
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map) |
|
for s in expr.args] |
|
cnfs.append(OR(*clause)) |
|
return ~AND(*cnfs) |
|
|
|
if isinstance(expr, Implies): |
|
L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map) |
|
return OR(~L, R) |
|
|
|
if isinstance(expr, Equivalent): |
|
cnfs = [] |
|
for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]): |
|
a = to_NNF(a, composite_map) |
|
b = to_NNF(b, composite_map) |
|
cnfs.append(OR(~a, b)) |
|
return AND(*cnfs) |
|
|
|
if isinstance(expr, ITE): |
|
L = to_NNF(expr.args[0], composite_map) |
|
M = to_NNF(expr.args[1], composite_map) |
|
R = to_NNF(expr.args[2], composite_map) |
|
return AND(OR(~L, M), OR(L, R)) |
|
|
|
if isinstance(expr, AppliedPredicate): |
|
pred, args = expr.function, expr.arguments |
|
newpred = composite_map.get(pred, None) |
|
if newpred is not None: |
|
return to_NNF(newpred.rcall(*args), composite_map) |
|
|
|
if isinstance(expr, Predicate): |
|
newpred = composite_map.get(expr, None) |
|
if newpred is not None: |
|
return to_NNF(newpred, composite_map) |
|
|
|
return Literal(expr) |
|
|
|
|
|
def distribute_AND_over_OR(expr): |
|
""" |
|
Distributes AND over OR in the NNF expression. |
|
Returns the result( Conjunctive Normal Form of expression) |
|
as a CNF object. |
|
""" |
|
if not isinstance(expr, (AND, OR)): |
|
tmp = set() |
|
tmp.add(frozenset((expr,))) |
|
return CNF(tmp) |
|
|
|
if isinstance(expr, OR): |
|
return CNF.all_or(*[distribute_AND_over_OR(arg) |
|
for arg in expr._args]) |
|
|
|
if isinstance(expr, AND): |
|
return CNF.all_and(*[distribute_AND_over_OR(arg) |
|
for arg in expr._args]) |
|
|
|
|
|
class CNF: |
|
""" |
|
Class to represent CNF of a Boolean expression. |
|
Consists of set of clauses, which themselves are stored as |
|
frozenset of Literal objects. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q |
|
>>> from sympy.assumptions.cnf import CNF |
|
>>> from sympy.abc import x |
|
>>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x)) |
|
>>> cnf.clauses |
|
{frozenset({Literal(Q.zero(x), True)}), |
|
frozenset({Literal(Q.negative(x), False), |
|
Literal(Q.positive(x), False), Literal(Q.zero(x), False)})} |
|
""" |
|
def __init__(self, clauses=None): |
|
if not clauses: |
|
clauses = set() |
|
self.clauses = clauses |
|
|
|
def add(self, prop): |
|
clauses = CNF.to_CNF(prop).clauses |
|
self.add_clauses(clauses) |
|
|
|
def __str__(self): |
|
s = ' & '.join( |
|
['(' + ' | '.join([str(lit) for lit in clause]) +')' |
|
for clause in self.clauses] |
|
) |
|
return s |
|
|
|
def extend(self, props): |
|
for p in props: |
|
self.add(p) |
|
return self |
|
|
|
def copy(self): |
|
return CNF(set(self.clauses)) |
|
|
|
def add_clauses(self, clauses): |
|
self.clauses |= clauses |
|
|
|
@classmethod |
|
def from_prop(cls, prop): |
|
res = cls() |
|
res.add(prop) |
|
return res |
|
|
|
def __iand__(self, other): |
|
self.add_clauses(other.clauses) |
|
return self |
|
|
|
def all_predicates(self): |
|
predicates = set() |
|
for c in self.clauses: |
|
predicates |= {arg.lit for arg in c} |
|
return predicates |
|
|
|
def _or(self, cnf): |
|
clauses = set() |
|
for a, b in product(self.clauses, cnf.clauses): |
|
tmp = set(a) |
|
for t in b: |
|
tmp.add(t) |
|
clauses.add(frozenset(tmp)) |
|
return CNF(clauses) |
|
|
|
def _and(self, cnf): |
|
clauses = self.clauses.union(cnf.clauses) |
|
return CNF(clauses) |
|
|
|
def _not(self): |
|
clss = list(self.clauses) |
|
ll = set() |
|
for x in clss[-1]: |
|
ll.add(frozenset((~x,))) |
|
ll = CNF(ll) |
|
|
|
for rest in clss[:-1]: |
|
p = set() |
|
for x in rest: |
|
p.add(frozenset((~x,))) |
|
ll = ll._or(CNF(p)) |
|
return ll |
|
|
|
def rcall(self, expr): |
|
clause_list = [] |
|
for clause in self.clauses: |
|
lits = [arg.rcall(expr) for arg in clause] |
|
clause_list.append(OR(*lits)) |
|
expr = AND(*clause_list) |
|
return distribute_AND_over_OR(expr) |
|
|
|
@classmethod |
|
def all_or(cls, *cnfs): |
|
b = cnfs[0].copy() |
|
for rest in cnfs[1:]: |
|
b = b._or(rest) |
|
return b |
|
|
|
@classmethod |
|
def all_and(cls, *cnfs): |
|
b = cnfs[0].copy() |
|
for rest in cnfs[1:]: |
|
b = b._and(rest) |
|
return b |
|
|
|
@classmethod |
|
def to_CNF(cls, expr): |
|
from sympy.assumptions.facts import get_composite_predicates |
|
expr = to_NNF(expr, get_composite_predicates()) |
|
expr = distribute_AND_over_OR(expr) |
|
return expr |
|
|
|
@classmethod |
|
def CNF_to_cnf(cls, cnf): |
|
""" |
|
Converts CNF object to SymPy's boolean expression |
|
retaining the form of expression. |
|
""" |
|
def remove_literal(arg): |
|
return Not(arg.lit) if arg.is_Not else arg.lit |
|
|
|
return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses)) |
|
|
|
|
|
class EncodedCNF: |
|
""" |
|
Class for encoding the CNF expression. |
|
""" |
|
def __init__(self, data=None, encoding=None): |
|
if not data and not encoding: |
|
data = [] |
|
encoding = {} |
|
self.data = data |
|
self.encoding = encoding |
|
self._symbols = list(encoding.keys()) |
|
|
|
def from_cnf(self, cnf): |
|
self._symbols = list(cnf.all_predicates()) |
|
n = len(self._symbols) |
|
self.encoding = dict(zip(self._symbols, range(1, n + 1))) |
|
self.data = [self.encode(clause) for clause in cnf.clauses] |
|
|
|
@property |
|
def symbols(self): |
|
return self._symbols |
|
|
|
@property |
|
def variables(self): |
|
return range(1, len(self._symbols) + 1) |
|
|
|
def copy(self): |
|
new_data = [set(clause) for clause in self.data] |
|
return EncodedCNF(new_data, dict(self.encoding)) |
|
|
|
def add_prop(self, prop): |
|
cnf = CNF.from_prop(prop) |
|
self.add_from_cnf(cnf) |
|
|
|
def add_from_cnf(self, cnf): |
|
clauses = [self.encode(clause) for clause in cnf.clauses] |
|
self.data += clauses |
|
|
|
def encode_arg(self, arg): |
|
literal = arg.lit |
|
value = self.encoding.get(literal, None) |
|
if value is None: |
|
n = len(self._symbols) |
|
self._symbols.append(literal) |
|
value = self.encoding[literal] = n + 1 |
|
if arg.is_Not: |
|
return -value |
|
else: |
|
return value |
|
|
|
def encode(self, clause): |
|
return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause} |
|
|